Skip to main content

High-Resolution AFM-Based Force Spectroscopy

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Atomic force microscopy (AFM)-based force spectroscopy is a powerful technique which has seen significant enhancements in both force and time resolution in recent years. This chapter details two AFM cantilever modification procedures that yield high force precision over different temporal bandwidths. Specifically, it explains a fairly straightforward method to achieve sub-pN force precision and stability at low frequencies (<50 Hz) by removing the metal coatings from a commercially available cantilever. A more involved procedure utilizing a focused ion beam milling machine is required to maintain high force precision at enhanced bandwidths. Both modification methods allow site-specific attachment of biomolecules onto the apex area of the tips for force spectroscopy. The chapter concludes with a comparative demonstration using the two cantilever modification methods to study a lipid-protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998

    Article  CAS  PubMed  Google Scholar 

  2. Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    Article  CAS  PubMed  Google Scholar 

  3. Borgia A, Williams PM, Clarke J (2008) Single-molecule studies of protein folding. Annu Rev Biochem 77:101–125

    Article  CAS  PubMed  Google Scholar 

  4. Kim BH, Lyubchenko YL (2014) Nanoprobing of misfolding and interactions of amyloid beta 42 protein. Nanomedicine 10(4):871–878

    Article  CAS  PubMed  Google Scholar 

  5. Oesterhelt F et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288(5463):143–146

    Article  CAS  PubMed  Google Scholar 

  6. Bippes C, Müller D (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys 74:086601

    Article  CAS  Google Scholar 

  7. Petrosyan R et al (2015) Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. Nano Lett 15(5):3624–3633

    Article  CAS  PubMed  Google Scholar 

  8. Yu H et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Matin TR et al (2017) Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning. Langmuir 33(16):4057–4065

    Article  PubMed  CAS  Google Scholar 

  10. Ganchev DN et al (2004) Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Biochemistry 43(47):14987–14993

    Article  PubMed  CAS  Google Scholar 

  11. Desmeules P et al (2002) Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophys J 82(6):3343–3350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Andre G, Brasseur R, Dufrene YF (2007) Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. J Mol Recognit 20(6):538–545

    Article  CAS  PubMed  Google Scholar 

  13. Schwierz N et al (2016) Mechanism of reversible peptide-bilayer attachment: combined simulation and experimental single-molecule study. Langmuir 32(3):810–821

    Article  CAS  PubMed  Google Scholar 

  14. Churnside AB et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12(7):3557–3561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Edwards DT et al (2015) Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope. Nano Lett 15(10):7091–7098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Walder R et al (2017) Rapid characterization of a mechanically labile alpha-helical protein enabled by efficient site-specific bioconjugation. J Am Chem Soc 139(29):9867–9875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Faulk JK et al (2017) Improved force spectroscopy using focused-ion-beam-modified cantilevers. Methods Enzymol 582:321

    Article  CAS  PubMed  Google Scholar 

  18. Edwards DT, Perkins TT (2017) Optimizing force spectroscopy by modifying commercial cantilevers: improved stability, precision, and temporal resolution. J Struct Biol 197(1):13–25

    Article  PubMed  Google Scholar 

  19. Zimmermann JL et al (2010) Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 5(6):975–985

    Article  CAS  PubMed  Google Scholar 

  20. Mingeot-Leclercq MP et al (2008) Atomic force microscopy of supported lipid bilayers. Nat Protoc 3(10):1654–1659

    Article  PubMed  Google Scholar 

  21. Sigdel KP, Grayer JS, King GM (2013) Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory. Nano Lett 13(11):5106–5111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation CAREER Award 1054832 (G.M.K.), a Burroughs Wellcome Fund Career Award at the Scientific Interface (G.M.K.), and the MU Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin M. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sigdel, K.P., Pittman, A.E., Matin, T.R., King, G.M. (2018). High-Resolution AFM-Based Force Spectroscopy. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics