Skip to main content

Nanoscale Dynamics and Energetics of Proteins and Protein-Nucleic Acid Complexes in Classical Molecular Dynamics Simulations

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

  • 2172 Accesses

Abstract

The present article describes techniques for classical simulations of proteins and protein-nucleic acid complexes, revealing their dynamics and protein-substrate binding energies. The approach is based on classical atomistic molecular dynamics (MD) simulations of the experimentally determined structures of the complexes. MD simulations can provide dynamics of complexes in realistic solvents on microsecond timescales, and the free energy methods are able to provide Gibbs free energies of binding of substrates, such as nucleic acids, to proteins. The chapter describes methodologies for the preparation of computer models of biomolecular complexes and free energy perturbation methodology for evaluating Gibbs free energies of binding. The applications are illustrated with examples of snapshots of proteins and their complexes with nucleic acids, as well as the precise Gibbs free energies of binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  2. Perilla JR, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9:646–652

    Article  CAS  Google Scholar 

  4. Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94:L75–L77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gumbart J, Chipot C, Schulten K (2011) Free energy of nascent-chain folding in the translocon. J Am Chem Soc 133:7602–7607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fajer M, Meng Y, Roux B (2016) The activation of c-Src tyrosine kinase: conformational transition pathway and free energy landscape. J Phys Chem B 121:3352–3363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. BBA-Gen Subjects 1850:872–877

    Article  CAS  Google Scholar 

  8. Shukla D, Meng Y, Roux B, Pande VS (2014) Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5:3397

    Article  CAS  PubMed  Google Scholar 

  9. Levy Y, Onuchic JN, Wolynes PG (2007) Fly-casting in protein-DNA binding: frustration between protein folding and electrostatics facilitates target recognition. J Am Chem Soc 129:738–739

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Vukovic L, Rudack T, Han W, Schulten K (2016) Recognition of poly-ubiquitins by the proteasome through protein refolding guided by electrostatic and hydrophobic interactions. J Phys Chem B 120:8137–8146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vukovic L, Koh HR, Myong S, Schulten K (2014) Substrate recognition and specificity of double-stranded RNA binding proteins. Biochemistry 53:3457–3466

    Article  CAS  PubMed  Google Scholar 

  12. Ma W, Schulten K (2015) Mechanism of substrate translocation by a ring-shaped ATPase motor at millisecond resolution. J Am Chem Soc 137:3031–3040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. McCullagh M, Saunders MG, Voth GA (2014) Unraveling the mystery of ATP hydrolysis in actin filaments. J Am Chem Soc 136:13053–13058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dhakshnamoorthy B, Rohaim A, Rui H, Blachowicz L, Roux B (2016) Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola. Nat Commun 7:12753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Moradi M, Enkavi G, Tajkhorshid E (2015) Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter. Nat Commun 6:8393

    Article  CAS  PubMed  Google Scholar 

  16. Moradi M, Tajkhorshid E (2013) Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 110:18916–18921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gumbart JC, Chipot C, Schulten K (2011) Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A 108:3596–3601

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gumbart JC, Chipot C (2016) Decrypting protein insertion through the translocon with free-energy calculations. Biochim Biophys Acta Biomembr 1858:1663–1671

    Article  CAS  Google Scholar 

  19. Rosta E, Nowotny M, Yang W, Hummer G (2011) Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133:8934–8941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ganguly A, Thaplyal P, Rosta E, Bevilacqua PC, Hammes-Schiffer S (2014) Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the Hepatitis Delta virus ribozyme. J Am Chem Soc 136:1483–1496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the ATP and ADP catalytic sites of F1-ATPase. Biophys J 87:2954–2967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Vuković L, Chipot C, Makino DL, Conti E, Schulten K (2016) Molecular mechanism of processive 3′ to 5′ RNA translocation in the active subunit of the RNA exosome complex. J Am Chem Soc 138:4069–4078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L (2017) Computational model and dynamics of monomeric full-length APOBEC3G. ACS Cent Sci 3:1180. https://doi.org/10.1021/acscentsci.7b00346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gumbart JC, Roux B, Chipot C (2013) Standard binding free energies from computer simulations: what is the best strategy? J Chem Theory Comput 9:794–802

    Article  CAS  PubMed  Google Scholar 

  25. Phillips JC, Braun R, Wang W, Gumbart JC, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Case DA, Cerutti DS, Cheatham TE III et al (2017) AMBER 2017. University of California, San Francisco

    Google Scholar 

  27. Brooks BR, Brooks CL III, Mackerell AD Jr et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  30. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

    Google Scholar 

  31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  33. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Best RB et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Darden DR, York TD, Pedersen L (1993) Particle mesh Ewald: an nlog(n) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  36. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  37. Liu P, Dehez F, Cai W, Chipot C (2012) A toolkit for the analysis of free-energy perturbation calculations. J Chem Theory Comput 8:2606–2616

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lela Vuković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gorle, S., Vuković, L. (2018). Nanoscale Dynamics and Energetics of Proteins and Protein-Nucleic Acid Complexes in Classical Molecular Dynamics Simulations. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics