Skip to main content

AFM Indentation Analysis of Cells to Study Cell Mechanics and Pericellular Coat

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Atomic force microscopy (AFM) indentation analysis of cells is a unique method of measuring stiffness of the cell body and physical properties of its pericellular coat. These cell parameters correlate with cells of abnormality and diseases. Viable biological cells can be studied with this method directly in a culture dish with no special preparation. Here we describe a step-by-step method to analyze the AFM force-indentation curves to derive cell mechanics (the modulus of elasticity of the cell body) and the parameters of the pericellular coat (density and the thickness of the coat layer). Technical details, potential difficulties, and points of special attention are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ulrich P, Zhang X (1997) Pharmacological reversal of advanced glycation end-product-mediated protein crosslinking. Diabetologia 40:S157–S159

    Article  PubMed  Google Scholar 

  2. Perry G, Smith MA (2001) Active glycation in neurofibrillary pathology of Alzheimer’s disease: N-(Carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31:175–180

    Article  PubMed  Google Scholar 

  3. Bucala R, Cerami A (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol 23:1–34

    Article  CAS  PubMed  Google Scholar 

  4. Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50(1):81–92. https://doi.org/10.1088/0031-9155/50/1/007

    Article  PubMed  Google Scholar 

  5. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783. https://doi.org/10.1038/nnano.2007.388

    Article  CAS  PubMed  Google Scholar 

  7. Zahn JT, Louban I, Jungbauer S, Bissinger M, Kaufmann D, Kemkemer R, Spatz JP (2011) Age-dependent changes in microscale stiffness and mechanoresponses of cells. Small 7(10):1480–1487. https://doi.org/10.1002/smll.201100146

    Article  PubMed  CAS  Google Scholar 

  8. Lu S, Long M (2005) Forced dissociation of selectin-ligand complexes using steered molecular dynamics simulation. Mol Cell Biomech 2(4):161–177

    PubMed  Google Scholar 

  9. Maidment SL (1997) The cytoskeleton and brain tumour cell migration. Anticancer Res 17(6B):4145–4149

    PubMed  CAS  Google Scholar 

  10. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  11. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176

    Article  CAS  PubMed  Google Scholar 

  12. Guz N, Dokukin M, Kalaparthi V, Sokolov I (2014) If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 107(3):564–575. https://doi.org/10.1016/j.bpj.2014.06.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sokolov I, Iyer S, Subba-Rao V, Gaikwad RM, Woodworth CD (2007) Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl Phys Lett 91:023902–023901–023903

    Article  CAS  Google Scholar 

  14. Guz NV, Dokukin ME, Woodworth CD, Cardin A, Sokolov I (2015) Towards early detection of cervical cancer: fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer. Nanomedicine 11(7):1667–1675. https://doi.org/10.1016/j.nano.2015.04.012

    Article  PubMed  CAS  Google Scholar 

  15. Gaikwad RM, Dokukin ME, Iyer KS, Woodworth CD, Volkov DO, Sokolov I (2011) Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force. Analyst 136(7):1502–1506. https://doi.org/10.1039/c0an00366b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dokukin ME, Guz NV, Gaikwad RM, Woodworth CD, Sokolov I (2011) Cell surface as a fractal: normal and cancerous cervical cells demonstrate different fractal behavior of surface adhesion maps at the nanoscale. Phys Rev Lett 107(2):028101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaikwad RM, Iyer S, Guz N, Volkov D, Dokukin M, Woodworth CD, Sokolov I (2010) Atomic force microscopy helps to develop methods for physical detection of cancerous cells. In: IEEE 2010 Fourth International Conference on Quantum, Nano and Micro Technologies. pp 18–22. https://doi.org/10.1109/ICQNM.2010

  18. Sokolov I (2009) Interaction between silica particles and human epithelial cells: atomic force microscopy and fluorescence study. In: Jelinek R (ed) Cellular and biomolecular recognition. Wiley-VCH Verlag GmbH & Co, NY, pp 69–96

    Chapter  Google Scholar 

  19. Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I (2009) AFM detects differences in the surface brush on normal and cancerous cervical cells. Nat Nanotechnol 4:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Hoh JH (2004) Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem Biophys Res Commun 324(2):489–496

    Article  CAS  PubMed  Google Scholar 

  21. Brown HG, Hoh JH (1997) Entropic exclusion by neurofilament side arms: a mechanism for maintaining interfilament spacing. Biochemistry 36(49):15035–15040

    Article  CAS  PubMed  Google Scholar 

  22. Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res 59(5):1141–1145

    PubMed  CAS  Google Scholar 

  23. Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M, Kimata K (2002) Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci U S A 99(6):3609–3614. https://doi.org/10.1073/pnas.052026799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Toole B (1982) Glycosaminoglycans in morphogenesis. In: Hay E (ed) Cell biology of the extracellular matrix. Plenum Press, New York, pp 259–294

    Google Scholar 

  25. Zimmerman E, Geiger B, Addadi L (2002) Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys J 82(4):1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8(8):850–855. https://doi.org/10.1038/nm742

    Article  PubMed  CAS  Google Scholar 

  27. Chen WY, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7(2):79–89

    Article  CAS  PubMed  Google Scholar 

  28. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179. https://doi.org/10.1038/nm1315

    Article  PubMed  CAS  Google Scholar 

  29. de la Motte CA, Hascall VC, Drazba J, Bandyopadhyay SK, Strong SA (2003) Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid: polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am J Pathol 163(1):121–133

    Article  PubMed  PubMed Central  Google Scholar 

  30. Richards JS (2005) Ovulation: new factors that prepare the oocyte for fertilization. Mol Cell Endocrinol 234(1–2):75–79. https://doi.org/10.1016/j.mce.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  31. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539. https://doi.org/10.1038/nrc1391

    Article  PubMed  CAS  Google Scholar 

  32. Simon M, Dokukin M, Kalaparthi V, Spedden E, Sokolov I, Staii C (2016) Load rate and temperature dependent mechanical properties of the cortical neuron and its Pericellular layer measured by atomic force microscopy. Langmuir 32(4):1111–1119. https://doi.org/10.1021/acs.langmuir.5b04317

    Article  PubMed  CAS  Google Scholar 

  33. Sokolov I, Dokukin ME, Guz NV (2013) Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 60(2):202–213. https://doi.org/10.1016/j.ymeth.2013.03.037

    Article  PubMed  CAS  Google Scholar 

  34. Dokukin ME, Guz NV, Sokolov I (2013) Quantitative study of the elastic Modulus of loosely attached cells in AFM indentation experiments. Biophys J 104(10):2123–2131. https://doi.org/10.1016/j.bpj.2013.04.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dokukin M, Ablaeva Y, Kalaparthi V, Seluanov A, Gorbunova V, Sokolov I (2016) Pericellular brush and mechanics of Guinea pig fibroblast cells studied with AFM. Biophys J 111(1):236–246. https://doi.org/10.1016/j.bpj.2016.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Seluanov A, Vaidya A, Gorbunova V (2010) Establishing primary adult fibroblast cultures from rodents. J Vis Exp 44:pii: 2033. https://doi.org/10.3791/2033

    Article  CAS  Google Scholar 

  37. Sokolov I, Iyer S, Woodworth CD (2006) Recovery of elasticity of aged human epithelial cells in-vitro. Nanomedicine 2:31–36

    Article  CAS  PubMed  Google Scholar 

  38. Butt HJ, Kappl M, Mueller H, Raiteri R, Meyer W, Ruhe J (1999) Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15(7):2559–2565

    Article  CAS  Google Scholar 

  39. Volkov DO, Dandu PRV, Goodman H, Santora B, Sokolov I (2011) Influence of adhesion of silica and ceria abrasive nanoparticles on chemical-mechanical planarization of silica surfaces. Appl Surf Sci 257(20):8518–8524

    Article  CAS  Google Scholar 

  40. Sokolov I (2007) Atomic force microscopy in Cancer cell research. In: Webster HSNaT (ed) Cancer nanotechnology – nanomaterials for Cancer diagnosis and therapy. APS, Los Angeles, pp 43–59

    Google Scholar 

  41. Dokukin ME, Guz NV, Sokolov I (2017) Mechanical properties of cancer cells depend on number of passages: atomic force microscopy indentation study. Jpn J Appl Phys 56:08LB01

    Article  Google Scholar 

  42. Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3(6):607–610. https://doi.org/10.1038/35078583

    Article  PubMed  CAS  Google Scholar 

  43. Iyer S, Woodworth CD, Gaikwad RM, Kievsky YY, Sokolov I (2009) Towards nonspecific detection of malignant cervical cells with fluorescent silica beads. Small 5(20):2277–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I.S. gratefully acknowledges funding for this work by NSF CMMI-1435655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sokolov, I., Dokukin, M.E. (2018). AFM Indentation Analysis of Cells to Study Cell Mechanics and Pericellular Coat. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics