Skip to main content

Probing Bacterial Adhesion at the Single-Molecule and Single-Cell Levels by AFM-Based Force Spectroscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Functionalization of AFM probes with biomolecules or microorganisms allows for a better understanding of the interaction mechanisms driving microbial adhesion. Here we describe the most commonly used protocols to graft molecules and bacteria to AFM cantilevers. The bioprobes obtained that way enable to measure forces down to the single-cell and single-molecule levels.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beaussart A, Pechoux C, Trieu-Cuot P et al (2014) Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae. Nanoscale 6:14820–14827

    Article  CAS  PubMed  Google Scholar 

  2. Dover RS, Bitler A, Shimoni E et al (2015) Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun 6:7193

    Article  PubMed  Google Scholar 

  3. Hayhurst EJ, Kailas L, Hobbs JK et al (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci U S A 105:14603–14608

    Article  PubMed Central  PubMed  Google Scholar 

  4. Turner RD, Ratcliffe EC, Wheeler R et al (2010) Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun 1:1

    Article  CAS  Google Scholar 

  5. Andre G, Kulakauskas S, Chapot-Chartier MP et al (2010) Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat Commun 1:1

    Article  CAS  Google Scholar 

  6. El-Kirat-Chatel S, Dufrene YF (2012) Nanoscale imaging of the Candida - macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 6:10792–10799

    Article  CAS  PubMed  Google Scholar 

  7. Labernadie A, Thibault C, Vieu C et al (2010) Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci U S A 107:21016–21021

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dupres V, Alsteens D, Pauwels K et al (2009) In vivo imaging of S-layer Nanoarrays on Corynebacterium glutamicum. Langmuir 25:9653–9655

    Article  CAS  PubMed  Google Scholar 

  9. Alsteens D, Aimanianda V, Hegde P et al (2013) Unraveling the nanoscale surface properties of chitin synthase mutants of Aspergillus fumigatus and their biological implications. Biophys J 105:320–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bayry J, Beaussart A, Dufrene YF et al (2014) Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect Immun 82:3141–3153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chtcheglova LA, Hinterdorfer P (2011) Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 24:788–794

    Article  CAS  PubMed  Google Scholar 

  12. El-Kirat-Chatel S, Boyd CD, O’Toole GA et al (2014) Single-molecule analysis of Pseudomonas fluorescens footprints. ACS Nano 8:1690–1698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Heinisch JJ, Lipke PN, Beaussart A et al (2012) Atomic force microscopy – looking at mechanosensors on the cell surface. J Cell Sci 125:4189–4195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  CAS  PubMed  Google Scholar 

  15. Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Article  CAS  PubMed  Google Scholar 

  16. Alsteens D, Garcia MC, Lipke PN et al (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 107:20744–20749

    Article  PubMed Central  PubMed  Google Scholar 

  17. Beaussart A, Alsteens D, El-Kirat-Chatel S et al (2012) Single-molecule imaging and functional analysis of Als Adhesins and Mannans during Candida albicans morphogenesis. ACS Nano 6:10950–10964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Heinisch JJ, Dupres V, Wilk S et al (2010) Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1. PLoS One 5:e11104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Alsteens D, Dupres V, Klotz SA et al (2009) Unfolding individual Als5p adhesion proteins on live cells. ACS Nano 3:1677–1682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. El-Kirat-Chatel S, Beaussart A, Boyd CD et al (2014) Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm Adhesin LapA. ACS Chem Biol 9:485–494

    Article  CAS  PubMed  Google Scholar 

  21. Francius G, Alsteens D, Dupres V et al (2009) Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat Protoc 4:939–946

    Article  CAS  PubMed  Google Scholar 

  22. Marszalek PE, Oberhauser AF, Pang YP et al (1998) Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396:661–664

    Article  CAS  PubMed  Google Scholar 

  23. Rief M, Oesterhelt F, Heymann B et al (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  CAS  PubMed  Google Scholar 

  24. Beaussart A, Ngo TC, Derclaye S et al (2014) Chemical force microscopy of stimuli-responsive adhesive copolymers. Nanoscale 6:565–571

    Article  CAS  PubMed  Google Scholar 

  25. Alsteens D, Dague E, Rouxhet PG et al (2007) Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23:11977–11979

    Article  CAS  PubMed  Google Scholar 

  26. Alsteens D, Dupres V, Yunus S et al (2012) High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir 28:16738–16744

    Article  CAS  PubMed  Google Scholar 

  27. Dague E, Alsteens D, Latge JP et al (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    Article  CAS  PubMed  Google Scholar 

  28. Dufrene YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3:1132–1138

    Article  CAS  PubMed  Google Scholar 

  29. Beaussart A, El-Kirat-Chatel S, Sullan RMA et al (2014) Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9:1049–1055

    Article  CAS  PubMed  Google Scholar 

  30. Alsteens D, Beaussart A, Derclaye S et al (2013) Single-cell force spectroscopy of Als-mediated fungal adhesion. Anal Methods 5:3657–3662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Beaussart A, El-Kirat-Chatel S, Herman P et al (2013) Single-cell force spectroscopy of probiotic Bacteria. Biophys J 104:1886–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. El-Kirat-Chatel S, Dufrene YF (2016) Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. Nanoscale Horiz 1:69–74

    Article  CAS  PubMed  Google Scholar 

  33. Helenius J, Heisenberg CP, Gaub HE et al (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  CAS  PubMed  Google Scholar 

  34. Jauvert E, Dague E, Severac M et al (2012) Probing single molecule interactions by AFM using bio-functionalized dendritips. Sens Actuators B Chem 168:436–441

    Article  CAS  Google Scholar 

  35. Meister A, Gabi M, Behr P et al (2009) FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9:2501–2507

    Article  CAS  PubMed  Google Scholar 

  36. Ebner A, Wildling L, Kamruzzahan ASM et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18:1176–1184

    Article  CAS  PubMed  Google Scholar 

  37. Wildling L, Unterauer B, Zhu R et al (2011) Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 22:1239–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. http://www.jku.at/biophysics/content

  39. Dupres V, Alsteens D, Wilk S et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    Article  CAS  PubMed  Google Scholar 

  40. Beaussart A, Abellan-Flos M, El-Kirat-Chatel S et al (2016) Force nanoscopy as a versatile platform for quantifying the activity of antiadhesion compounds targeting bacterial pathogens. Nano Lett 16:1299–1307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane El-Kirat-Chatel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

El-Kirat-Chatel, S., Beaussart, A. (2018). Probing Bacterial Adhesion at the Single-Molecule and Single-Cell Levels by AFM-Based Force Spectroscopy. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics