Skip to main content

Probing RNA–Protein Interactions with Single-Molecule Pull-Down Assays

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Recent advances in single-molecule techniques allow for dynamic observations of the interactions between various protein assemblies and RNA molecules with high spatiotemporal resolution. However, it remains challenging to obtain functional eukaryotic protein complexes and cost-effective fluorescently labeled RNAs to study their interactions at the single-molecule level. Here, we describe protocols combining single-molecule fluorescence with various protein complex pull-down techniques to determine the function of RNA-interacting protein complexes of interest. We provide step-by-step guidance for using novel single-molecule techniques including RNA labeling, protein complexes purification, and single-molecule imaging. As a proof-of-concept of the utility of our single-molecule approaches, we show how human Dicer and its cofactor TRBP orchestrate the biogenesis of microRNA in real time. These single-molecule pull-down and fluorescence assays provide sub-second time resolution and can be applied to various ribonucleoprotein complexes that are essential for cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  2. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Srihari S, Yong CH, Patil A, Wong L (2015) Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett 589:2590–2602

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y (2017) An atomic structure of the human spliceosome. Cell 169:918–929.e914

    Article  CAS  PubMed  Google Scholar 

  6. Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K (2016) Cryo-EM structure of the spliceosome immediately after branching. Nature 537:197–201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS (2016) Structure of human DROSHA. Cell 164:81–90

    Article  CAS  PubMed  Google Scholar 

  8. Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, Wombacher R, Ramirez N, Cornish VW, Gelles J, Moore MJ (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Lee HW, Ryu JY, Yoo J, Choi B, Kim K, Yoon TY (2013) Real-time single-molecule coimmunoprecipitation of weak protein-protein interactions. Nat Protoc 8:2045–2060

    Article  CAS  PubMed  Google Scholar 

  10. Lee HW, Kyung T, Yoo J, Kim T, Chung C, Ryu JY, Lee H, Park K, Lee S, Jones WD et al (2013) Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Nat Commun 4:1505

    Article  PubMed  CAS  Google Scholar 

  11. Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, Ragunathan K, Park J, Chen J, Xiang YK, Ha T (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473:484–488

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, Joo C (2016) TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7:13694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Fareh M, Loeff L, Szczepaniak M, Haagsma AC, Yeom KH, Joo C (2016) Single-molecule pull-down for investigating protein-nucleic acid interactions. Methods 105:99–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Yeom KH, Heo I, Lee J, Hohng S, Kim VN, Joo C (2011) Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. EMBO Rep 12:690–696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  16. Chandradoss SD, Haagsma AC, Lee YK, Hwang JH, Nam JM, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86. https://doi.org/10.3791/50549

  17. Joo C, Ha T (2012) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012(12). doi: https://doi.org/10.1101/pdb.top072058

    Article  Google Scholar 

  18. Fareh M, Turchi L, Virolle V, Debruyne D, Almairac F, de-la- Forest Divonne S, Paquis P, Preynat-Seauve O, Krause KH, Chneiweiss H et al (2012) The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell Death Differ 19:232–244

    Article  CAS  PubMed  Google Scholar 

  19. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  PubMed  CAS  Google Scholar 

  20. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  CAS  PubMed  Google Scholar 

  21. Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474

    Article  CAS  PubMed  Google Scholar 

  22. MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198

    Article  CAS  PubMed  Google Scholar 

  23. MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by dicer. Nat Struct Mol Biol 14:934–940

    Article  CAS  PubMed  Google Scholar 

  24. Tian Y, Simanshu DK, Ma JB, Park JE, Heo I, Kim VN, Patel DJ (2014) A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell 53:606–616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105:512–517

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K, Iizasa H, Davuluri RV, Nishikura K (2013) ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153:575–589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C.J. lab members for technical help and discussions. We thank Luuk Loeff, Malwina Szczepaniak, Anna C. Haagsma, Kyu-Hyeon Yeom for their help and support throughout the development of our single-molecule pulldown technique. This work was supported by a European Research Council Starting Grant under the European Union’s Seventh Framework Programme [FP7/2007–2013/ERC grant 309509 to C.J]; and the Fondation pour la Recherche Medicale [SPE20120523964 to M.F].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fareh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fareh, M., Joo, C. (2018). Probing RNA–Protein Interactions with Single-Molecule Pull-Down Assays. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics