Methods for Using a Genetically Encoded Fluorescent Biosensor to Monitor Nuclear NAD+

  • Michael S. Cohen
  • Melissa L. Stewart
  • Richard H. Goodman
  • Xiaolu A. CambronneEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)


Free nicotinamide adenine dinucleotide (NAD+) serves as substrate for NAD+-consuming enzymes. As such, the local concentration of free NAD+ can influence enzymatic activities. Here we describe methods for using a fluorescent, genetically-encoded sensor to measure subcellular NAD+ concentrations. We also include a discussion of the limitations and potential applications for the current sensor. Presented in this chapter are (1) guidelines for calibrating instrumentation and experimental setups using a bead-based method, (2) instructions for incorporating required controls and properly performing ratiometric measurements in cells, and (3) descriptions of how to evaluate relative and quantitative fluctuations using appropriate statistical methods for ratio-of-ratio measurements.

Key words

NAD+ Nicotinamide adenine dinucleotide Biosensor Metabolite Fluorescent sensor Circularly permuted fluorescent protein ARTD PARP 



This work was supported by funding from the Hillcrest Committee Pilot Project Award and NIH DP2GM126897 and P30CA069533 to X.A.C. and The Pew Charitable Trusts to M.S.C. NAD+ sensors which are available to the academic research community under a material transfer agreement with Oregon Health & Science University (OHSU). The authors are listed as inventors on patent PCT/US15/62003 for the NAD+ sensor.


  1. 1.
    Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43CrossRefGoogle Scholar
  2. 2.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800CrossRefGoogle Scholar
  3. 3.
    Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219CrossRefGoogle Scholar
  4. 4.
    Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126CrossRefGoogle Scholar
  5. 5.
    Yang Y, Sauve AA (2016) NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864:1787–1800CrossRefGoogle Scholar
  6. 6.
    Holzer H, Lynen F, Schultz G (1956) Determination of diphosphopyridine nucleotide/reduced diphosphopyridine nucleotide quotient in living yeast cells by analysis of constant alcohol and acetaldehyde concentrations. Biochem Z 328:252–263PubMedGoogle Scholar
  7. 7.
    Bucher T, Klingenberg M (1958) Wege des Wasserstoffs in der lebendigen Organisation. Angew Chem 70:552–570CrossRefGoogle Scholar
  8. 8.
    Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527CrossRefGoogle Scholar
  9. 9.
    Berger F, Lau C, Dahlmann M, Ziegler M (2005) Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 280:36334–36341CrossRefGoogle Scholar
  10. 10.
    Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N, Orsomando G (2014) Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One 9:e113939CrossRefGoogle Scholar
  11. 11.
    Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H (2003) Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem 278:13503–13511CrossRefGoogle Scholar
  12. 12.
    Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M (2010) Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J Biol Chem 285:18868–18876CrossRefGoogle Scholar
  13. 13.
    Di Stefano M, Galassi L, Magni G (2010) Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells. Blood Cells Mol Dis 45:33–39CrossRefGoogle Scholar
  14. 14.
    Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107CrossRefGoogle Scholar
  15. 15.
    Dölle C, Niere M, Lohndal E, Ziegler M (2010) Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci 67:433–443CrossRefGoogle Scholar
  16. 16.
    Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G, Moroni F, Chiarugi A (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 285:34106–34114CrossRefGoogle Scholar
  17. 17.
    Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH (2016) Biosensor reveals multiple sources for mitochondrial NAD+. Science 352:1474–1477CrossRefGoogle Scholar
  18. 18.
    VanLinden MR, Dölle C, Pettersen IK, Kulikova VA, Niere M, Agrimi G, Dyrstad SE, Palmieri F, Nikiforov AA, Tronstad KJ, Ziegler M (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J Biol Chem 290:27644–27659CrossRefGoogle Scholar
  19. 19.
    Nikiforov A, Dölle C, Niere M, Ziegler M (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation. J Biol Chem 286:21767–21778CrossRefGoogle Scholar
  20. 20.
    Hikosaka K, Ikutani M, Shito M, Kazuma K, Gulshan M, Nagai Y, Takatsu K, Konno K, Tobe K, Kanno H, Nakagawa T (2014) Deficiency of nicotinamide mononucleotide adenylyltransferase 3 (nmnat3) causes hemolytic anemia by altering the glycolytic flow in mature erythrocytes. J Biol Chem 289:14796–14811CrossRefGoogle Scholar
  21. 21.
    Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554CrossRefGoogle Scholar
  22. 22.
    Bilan DS, Matlashov ME, Gorokhovatsky AY, Schultz C, Enikolopov G, Belousov VV (2014) Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments. Biochim Biophys Acta 1840:951–957CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, Yang K, Zhu Q, Wang X, Yi J, Zhu L, Qian X, Chen L, Tang Y, Loscalzo J, Yang Y (2015) SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab 21:777–789CrossRefGoogle Scholar
  24. 24.
    Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W (2015) In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A 112:2876–2881CrossRefGoogle Scholar
  25. 25.
    Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:11241–11246CrossRefGoogle Scholar
  26. 26.
    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90CrossRefGoogle Scholar
  27. 27.
    Sanford L, Palmer A (2017) Recent advances in development of genetically encoded fluorescent sensors. Methods Enzymol 589:1–49CrossRefGoogle Scholar
  28. 28.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129CrossRefGoogle Scholar
  29. 29.
    Gajiwala KS, Pinko C (2004) Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal. Structure 12:1449–1459CrossRefGoogle Scholar
  30. 30.
    Lahiri SD, Gu RF, Gao N, Karantzeni I, Walkup GK, Mills SD (2012) Structure guided understanding of NAD+ recognition in bacterial DNA ligases. ACS Chem Biol 7:571–580CrossRefGoogle Scholar
  31. 31.
    Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. PNAS 98:3197–3202CrossRefGoogle Scholar
  32. 32.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881CrossRefGoogle Scholar
  33. 33.
    Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840CrossRefGoogle Scholar
  34. 34.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891CrossRefGoogle Scholar
  36. 36.
    Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286CrossRefGoogle Scholar
  37. 37.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  38. 38.
    Sakaguchi R, Endoh T, Yamamoto S, Tainaka K, Sugimoto K, Fujieda N, Kiyonaka S, Mori Y, Morii T (2009) A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain. Bioorg Med Chem 17:7381–7386CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14:555–566CrossRefGoogle Scholar
  40. 40.
    Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61CrossRefGoogle Scholar
  41. 41.
    Anderson BM, Anderson CD (1963) The effect of buffers on nicotinamide adenine dinucleotide hydrolysis. J Biol Chem 238:1475–1478PubMedGoogle Scholar
  42. 42.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael S. Cohen
    • 1
  • Melissa L. Stewart
    • 2
  • Richard H. Goodman
    • 2
  • Xiaolu A. Cambronne
    • 2
    • 3
    Email author
  1. 1.Department of Physiology and Pharmacology, Program in Chemical BiologyOregon Health and Science UniversityPortlandUSA
  2. 2.Vollum InstituteOregon Health and Science UniversityPortlandUSA
  3. 3.Department of Molecular BiosciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations