Detection of ADP-Ribosylating Bacterial Toxins

  • Chen Chen
  • Joseph T. BarbieriEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1813)


Many bacterial toxins catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD) to a host protein. Greater than 35 bacterial ADP-ribosyltransferase toxins (bARTTs) have been identified. ADP-ribosylation of host proteins may be specific or promiscuous. Despite this diversity, bARTTs share a common reaction mechanism, three-dimensional active site structure, and a conserved active site glutamic acid. Here, we describe how to measure the ADP-ribosylation of host proteins as purified proteins or within a cell lysate.

Key words

Bacterial toxins Toxins ADP-ribosyltransferase NAD-glycohydrolase 32P-NAD Biotin-NAD 



JTB laboratory is supported by grants from the NIH: AI-030162 and AI-118389.


  1. 1.
    Aktories K, Barbieri JT (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3:397–410CrossRefGoogle Scholar
  2. 2.
    Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611CrossRefGoogle Scholar
  3. 3.
    Barbieri JT, Riese MJ, Aktories K (2002) Bacterial toxins that modify the actin cytoskeleton. Annu Rev Cell Dev Biol 18:315–344CrossRefGoogle Scholar
  4. 4.
    Oppenheimer NJ, Bodley JW (1981) Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J Biol Chem 256:8579–8581PubMedGoogle Scholar
  5. 5.
    Liu S, Yahr TL, Frank DW, Barbieri JT (1997) Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol 179:1609–1613CrossRefGoogle Scholar
  6. 6.
    Wilson BA, Collier RJ (1992) Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism. Curr Top Microbiol Immunol 175:27–41PubMedGoogle Scholar
  7. 7.
    Koch-Nolte F, Haag F (1997) Mono(ADP-ribosyl)transferases and related enzymes in animal tissues. Emerging gene families. Adv Exp Med Biol 419:1–13CrossRefGoogle Scholar
  8. 8.
    Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BA, Witholt B, Hol WG (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371–377CrossRefGoogle Scholar
  9. 9.
    Domenighini M, Magagnoli C, Pizza M, Rappuoli R (1994) Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol 14:41–50CrossRefGoogle Scholar
  10. 10.
    Merritt EA, Hol WG (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171CrossRefGoogle Scholar
  11. 11.
    Carroll SF, Lory S, Collier RJ (1980) Ligand interactions of diphtheria toxin. III Direct photochemical cross-linking of ATP and NAD to toxin. J Biol Chem 255:12020–12024PubMedGoogle Scholar
  12. 12.
    Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69:1051–1061CrossRefGoogle Scholar
  13. 13.
    O’Keefe DO, Cabiaux V, Choe S, Eisenberg D, Collier RJ (1992) pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349----Lys. Proc Natl Acad Sci U S A 89:6202–6206CrossRefGoogle Scholar
  14. 14.
    Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB (1992) The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267:12420–12423PubMedGoogle Scholar
  15. 15.
    Chaudhary VK, Jinno Y, FitzGerald D, Pastan I (1990) Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci U S A 87:308–312CrossRefGoogle Scholar
  16. 16.
    Hessler JL, Kreitman RJ (1997) An early step in Pseudomonas exotoxin action is removal of the terminal lysine residue, which allows binding to the KDEL receptor. Biochemistry 36:14577–14582CrossRefGoogle Scholar
  17. 17.
    Teter K, Holmes RK (2002) Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 70:6172–6179CrossRefGoogle Scholar
  18. 18.
    Taylor M, Burress H, Banerjee T, Ray S, Curtis D, Tatulian SA, Teter K (2014) Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin. PLoS Pathog 10:e1003925CrossRefGoogle Scholar
  19. 19.
    Teter K, Allyn RL, Jobling MG, Holmes RK (2002) Transfer of the cholera toxin A1 polypeptide from the endoplasmic reticulum to the cytosol is a rapid process facilitated by the endoplasmic reticulum-associated degradation pathway. Infect Immun 70:6166–6171CrossRefGoogle Scholar
  20. 20.
    Massey S, Banerjee T, Pande AH, Taylor M, Tatulian SA, Teter K (2009) Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J Mol Biol 393:1083–1096CrossRefGoogle Scholar
  21. 21.
    Chinnapen DJ, Hsieh WT, te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D'Auria L, Park H, Wagner JS, Drake KR, Kang M, Benjamin T, Ullman MD, Costello CE, Kenworthy AK, Baumgart T, Massol RH, Lencer WI (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23:573–586CrossRefGoogle Scholar
  22. 22.
    Raghunathan K, Wong TH, Chinnapen DJ, Lencer WI, Jobling MG, Kenworthy AK (2016) Glycolipid crosslinking is required for cholera toxin to partition into and stabilize ordered domains. Biophys J 111:2547–2550CrossRefGoogle Scholar
  23. 23.
    Zhang J, Snyder SH (1993) Purification of a nitric oxide-stimulated ADP-ribosylated protein using biotinylated beta-nicotinamide adenine dinucleotide. Biochemistry 32:2228–2233CrossRefGoogle Scholar
  24. 24.
    Takei Y, Takahashi K, Kanaho Y, Katada T (1994) Pertussis toxin-catalyzed ADP-ribosylation of GTP-binding proteins with digoxigenin-conjugated NAD. Identification of the proteins in plasma membranes and nuclei. FEBS Lett 338:264–266CrossRefGoogle Scholar
  25. 25.
    Gulke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from clostridium difficile. Infect Immun 69:6004–6011CrossRefGoogle Scholar
  26. 26.
    Simon NC, Barbieri JT (2014) Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion. J Biol Chem 289:10650–10659CrossRefGoogle Scholar
  27. 27.
    Simon NC, Vergis JM, Ebrahimi AV, Ventura CL, O'Brien AD, Barbieri JT (2013) Host cell cytotoxicity and cytoskeleton disruption by CerADPr, an ADP-ribosyltransferase of Bacillus cereus G9241. Biochemistry 52:2309–2318CrossRefGoogle Scholar
  28. 28.
    Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci U S A 81:3307–3311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microbiology and ImmunologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations