Skip to main content

Single-Molecule Localization and Structured Illumination Microscopy of Platelet Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1812))

Abstract

Superresolution microscopy has become increasingly widespread over the past 5 years and allows users to image biological processes below the diffraction limit of traditional fluorescence microscopy where resolution is restricted to approximately 250 nm. Superresolution refers to a wide range of techniques which employ different approaches to circumvent the diffraction limit. Two of these approaches, structured illumination microscopy (SIM) and single-molecule localization microscopy (SMLM), which provide a doubling and tenfold increase in resolution respectively, are dominating the field. This is partly because of the insights into biology they offer and partly because of their commercialization by the main microscope manufacturers. This chapter provides background to the two techniques, practical considerations for their use, and protocols for their application to platelet biology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hartwig JH (1992) Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 118(6):1421–1442

    Article  CAS  PubMed  Google Scholar 

  2. Hartwig JH, Barkalow K, Azim A, Italiano J (1999) The elegant platelet: signals controlling actin assembly. Thromb Haemost 82(2):392–398

    PubMed  CAS  Google Scholar 

  3. van Nispen tot Pannerden H, de Haas F, Geerts W, Posthuma G, van Dijk S, Heijnen HF (2010) The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood 116(7):1147–1156. https://doi.org/10.1182/blood-2010-02-268680

    Article  PubMed  CAS  Google Scholar 

  4. van Nispen Tot Pannerden HE, van Dijk SM, Du V, Heijnen HF (2009) Platelet protein disulfide isomerase is localized in the dense tubular system and does not become surface expressed after activation. Blood 114(21):4738–4740. https://doi.org/10.1182/blood-2009-03-210450

    Article  PubMed  CAS  Google Scholar 

  5. White JG (1998) Use of the electron microscope for diagnosis of platelet disorders. Semin Thromb Hemost 24(2):163–168. https://doi.org/10.1055/s-2007-995836

    Article  PubMed  CAS  Google Scholar 

  6. Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci Chapter 2:Unit2.1. https://doi.org/10.1002/0471142301.ns0201s50

  7. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–418

    Article  Google Scholar 

  8. Inoué S (1990) Foundations of confocal scanned imaging in light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer US, Boston, MA, pp 1–14. https://doi.org/10.1007/978-1-4615-7133-9_1

    Chapter  Google Scholar 

  9. Huang B, Bates M, Zhuang X (2009) Super resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to Supramolecular assemblies. Trends Cell Biol 25(12):730–748. https://doi.org/10.1016/j.tcb.2015.10.004

    Article  PubMed  CAS  Google Scholar 

  11. John RA, Stephen TR, Michael WD (2013) Single molecule localization microscopy for superresolution. J Opt 15(9):094001

    Article  CAS  Google Scholar 

  12. Deschout H, Shivanandan A, Annibale P, Scarselli M, Radenovic A (2014) Progress in quantitative single-molecule localization microscopy. Histochem Cell Biol 142(1):5–17. https://doi.org/10.1007/s00418-014-1217-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nicovich PR, Owen DM, Gaus K (2017) Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nat Protoc 12(3):453–460. https://doi.org/10.1038/nprot.2016.166

    Article  PubMed  CAS  Google Scholar 

  14. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  16. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176. https://doi.org/10.1002/anie.200802376

    Article  PubMed  CAS  Google Scholar 

  17. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813. https://doi.org/10.1126/science.1153529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009

    Article  CAS  PubMed  Google Scholar 

  19. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 12(8):717–724. https://doi.org/10.1038/nmeth.3442

    Article  PubMed  CAS  Google Scholar 

  20. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. https://doi.org/10.1016/s0006-3495(02)75618-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924. https://doi.org/10.1038/srep07924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Requejo-Isidro J (2013) Fluorescence nanoscopy. Methods and applications. J Chem Biol 6(3):97–120. https://doi.org/10.1007/s12154-013-0096-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454. https://doi.org/10.1002/jbio.200900089

    Article  PubMed  CAS  Google Scholar 

  24. Pageon SV, Cordoba SP, Owen DM, Rothery SM, Oszmiana A, Davis DM (2013) Superresolution microscopy reveals nanometer-scale reorganization of inhibitory natural killer cell receptors upon activation of NKG2D. Sci Signal 6(285):ra62. https://doi.org/10.1126/scisignal.2003947

    Article  PubMed  CAS  Google Scholar 

  25. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12(7):655–662. https://doi.org/10.1038/ni.2049

    Article  PubMed  CAS  Google Scholar 

  26. Ashdown GW, Burn GL, Williamson DJ, Pandžić E, Peters R, Holden M, Ewers H, Shao L, Wiseman PW, Owen DM (2017) Live-cell super-resolution reveals F-actin and plasma membrane dynamics at the T cell synapse. Biophys J 112(8):1703–1713. https://doi.org/10.1016/j.bpj.2017.01.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Demmerle J, Innocent C, North AJ, Ball G, Muller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L (2017) Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc 12(5):988–1010. https://doi.org/10.1038/nprot.2017.019

    Article  PubMed  CAS  Google Scholar 

  28. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x

    Article  PubMed  CAS  Google Scholar 

  29. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. https://doi.org/10.1126/science.1156947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  CAS  PubMed  Google Scholar 

  31. Kamykowski J, Carlton P, Sehgal S, Storrie B (2011) Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood 118(5):1370–1373. https://doi.org/10.1182/blood-2011-01-330910

    Article  PubMed  CAS  Google Scholar 

  32. Aslan JE, Baker SM, Loren CP, Haley KM, Itakura A, Pang J, Greenberg DL, David LL, Manser E, Chernoff J, McCarty OJT (2013) The PAK system links rho GTPase signaling to thrombin-mediated platelet activation. Am J Physiol Cell Physiol 305(5):C519–C528. https://doi.org/10.1152/ajpcell.00418.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, Pikramenou Z, Rappoport JZ, Hartwig JH, Owen DM, Thrasher AJ, Watson SP, Thomas SG (2015) Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 6:7254. https://doi.org/10.1038/ncomms8254

    Article  PubMed  CAS  Google Scholar 

  34. Westmoreland D, Shaw M, Grimes W, Metcalf DJ, Burden JJ, Gomez K, Knight AE, Cutler DF (2016) Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J Thromb Haemost 14(4):839–849. https://doi.org/10.1111/jth.13269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jamasbi J, Megens RTA, Bianchini M, Uhland K, Münch G, Ungerer M, Sherman S, Faussner A, Brandl R, John C, Buchner J, Weber C, Lorenz R, Elia N, Siess W (2016) Cross-linking GPVI-fc by anti-fc antibodies potentiates its inhibition of atherosclerotic plaque- and collagen-induced platelet activation. JACC Basic Transl Sci 1(3):131–142. https://doi.org/10.1016/j.jacbts.2016.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  37. Pollitt AY, Poulter NS, Gitz E, Navarro-Nunez L, Wang YJ, Hughes CE, Thomas SG, Nieswandt B, Douglas MR, Owen DM, Jackson DG, Dustin ML, Watson SP (2014) Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 289(52):35695–35710. https://doi.org/10.1074/jbc.M114.584284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, Dalby A, Lampela R, Bouet G, Hobbs CM, Pask DC, Payne H, Ponomaryov T, Brill A, Soranzo N, Ouwehand WH, Pedersen RA, Ghevaert C (2016) Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 7:11208. https://doi.org/10.1038/ncomms11208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Thon JN, Dykstra BJ, Beaulieu LM (2017) Platelet bioreactor: accelerated evolution of design and manufacture. Platelets 28(5):472–477. https://doi.org/10.1080/09537104.2016.1265922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, Feng Q, Lu S, Lanza R, Neeves KB, Weitz DA, Italiano JE Jr (2014) Platelet bioreactor-on-a-chip. Blood 124(12):1857–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  42. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036. https://doi.org/10.1038/nmeth.1768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Metcalf DJ. Localisation microscopy immunolabelling guide. National Physics Laboratory Avalable via http://www.npl.co.uk/upload/pdf/localisation-microscopy-immunolabelling-guide.pdf. Accessed 29th May 2018

  45. Metcalf DJ, Edwards R, Kumarswami N, Knight AE (2013) Test samples for optimizing STORM super-resolution microscopy. J Vis Exp 79:50579. https://doi.org/10.3791/50579

    Article  Google Scholar 

  46. Riedl J, Flynn KC, Raducanu A, Gartner F, Beck G, Bosl M, Bradke F, Massberg S, Aszodi A, Sixt M, Wedlich-Soldner R (2010) Lifeact mice for studying F-actin dynamics. Nat Methods 7(3):168–169. https://doi.org/10.1038/nmeth0310-168

    Article  PubMed  CAS  Google Scholar 

  47. Stagge F, Mitronova GY, Belov VN, Wurm CA, Jakobs S (2013) Snap-, CLIP- and Halo-tag Labelling of budding yeast cells. PLoS One 8(10):e78745. https://doi.org/10.1371/journal.pone.0078745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. https://doi.org/10.1038/srep15915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Poulter NS, Pitkeathly WTE, Smith PJ, Rappoport JZ (2015) The physical basis of Total internal reflection fluorescence (TIRF) microscopy and its cellular applications. In: Verveer PJ (ed) Advanced fluorescence microscopy: methods and protocols. Springer New York, New York, NY, pp 1–23. https://doi.org/10.1007/978-1-4939-2080-8_1

    Chapter  Google Scholar 

  50. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. https://doi.org/10.1093/bioinformatics/btu202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279–280

    Article  CAS  PubMed  Google Scholar 

  52. Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grunwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6):557–562. https://doi.org/10.1038/nmeth.2448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poulter, N.S., Khan, A.O., Pallini, C., Thomas, S.G. (2018). Single-Molecule Localization and Structured Illumination Microscopy of Platelet Proteins. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes . Methods in Molecular Biology, vol 1812. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8585-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8585-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8584-5

  • Online ISBN: 978-1-4939-8585-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics