Skip to main content

Three-Dimensional Tissue Models for Studying Ex Vivo Megakaryocytopoiesis and Platelet Production

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1812))

Abstract

Three-dimensional (3D) tissue cultures in vitro enable a more physiological reconstruction of native tissues and organs. The bone marrow environment, structure and composition regulate megakaryocyte function and platelet production. Here, we describe the use of silk fibroin protein biomaterials to assemble 3D scaffolds mimicking the bone marrow niche architecture and extracellular matrix composition to support platelet release from human megakaryocytes. Additionally, we also propose the use of hyaluronan hydrogels, functionalized with extracellular matrix components, to reproduce the 3D matrix structure of the bone marrow environment for studying human megakaryocyte function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. https://doi.org/10.1038/nature12984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wang LD, Wagers AJ (2011) Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 12(10):643–655. https://doi.org/10.1038/nrm3184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ivanovska IL, Shin JW, Swift J, Discher DE (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25(9):523–532. https://doi.org/10.1016/j.tcb.2015.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A (2015) The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci. https://doi.org/10.1007/s00018-014-1813-y

  5. Aguilar A, Pertuy F, Eckly A, Strassel C, Collin D, Gachet C, Lanza F, Léon C (2016) Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood 128(16):2022–2032. https://doi.org/10.1182/blood-2016-02-699959

    Article  PubMed  CAS  Google Scholar 

  6. Malara A, Gruppi C, Pallotta I, Spedden E, Tenni R, Raspanti M, Kaplan D, Tira ME, Staii C, Balduini A (2011) Extracellular matrix structure and nano-mechanics determine megakaryocyte function. Blood 118(16):4449–4453. https://doi.org/10.1182/blood-2011-04-345876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Abbonante V, Di Buduo CA, Gruppi C, De Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G, Kaplan D, Moccia F, Ravid K, Balduini A (2017) A new path to platelet production through matrix sensing. Haematologica. https://doi.org/10.3324/haematol.2016.161562

  8. Abbonante V, Di Buduo CA, Gruppi C, Malara A, Gianelli U, Celesti G, Anselmo A, Laghi L, Vercellino M, Visai L, Iurlo A, Moratti R, Barosi G, Rosti V, Balduini A (2016) Thrombopoietin/TGF-β1 loop regulates megakaryocyte extracellular matrix component synthesis. Stem Cells 34(4):1123–1133. https://doi.org/10.1002/stem.2285

    Article  PubMed  CAS  Google Scholar 

  9. Balduini A, Di Buduo CA, Kaplan DL (2016) Translational approaches to functional platelet production ex vivo. Thromb Haemost 115(2):250–256. https://doi.org/10.1160/TH15-07-0570

    Article  PubMed  Google Scholar 

  10. Di Buduo CA, Kaplan DL, Balduini A (2017) In vitro generation of platelets: where do we stand? Transfus Clin Biol doi:https://doi.org/10.1016/j.tracli.2017.06.013

  11. Di Buduo CA, Wray LS, Tozzi L, Malara A, Chen Y, Ghezzi CE, Smoot D, Sfara C, Antonelli A, Spedden E, Bruni G, Staii C, De Marco L, Magnani M, Kaplan DL, Balduini A (2015) Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood 125(14):2254–2264. https://doi.org/10.1182/blood-2014-08-595561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A (2016) Revealing Eltrombopag's promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica. https://doi.org/10.3324/haematol.2016.146746

  13. Di Buduo CA, Soprano PM, Tozzi L, Marconi S, Auricchio F, Kaplan DL, Balduini A (2017) Modular flow chamber for engineering bone marrow architecture and function. Biomaterials 146:60–71. https://doi.org/10.1016/j.biomaterials.2017.08.006

    Article  PubMed  CAS  Google Scholar 

  14. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531. https://doi.org/10.1126/science.1188936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kluge JA, Li AB, Kahn BT, Michaud DS, Omenetto FG, Kaplan DL (2016) Silk-based blood stabilization for diagnostics. Proc Natl Acad Sci U S A 113(21):5892–5897. https://doi.org/10.1073/pnas.1602493113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wray LS, Tsioris K, Gi ES, Omenetto FG, Kaplan DL (2013) Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 23(27):3404–3412. https://doi.org/10.1002/adfm.201202926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lu Q, Wang X, Hu X, Cebe P, Omenetto F, Kaplan DL (2010) Stabilization and release of enzymes from silk films. Macromol Biosci 10(4):359–368. https://doi.org/10.1002/mabi.200900388

    Article  PubMed  CAS  Google Scholar 

  18. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631. https://doi.org/10.1038/nprot.2011.379

    Article  PubMed  CAS  Google Scholar 

  19. Currao M, Malara A, Di Buduo CA, Abbonante V, Tozzi L, Balduini A (2015) Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions. Exp Cell Res doi:https://doi.org/10.1016/j.yexcr.2015.05.014

  20. Di Buduo CA, Alberelli MA, Glembostky AC, Podda G, Lev PR, Cattaneo M, Landolfi R, Heller PG, Balduini A, De Candia E (2016) Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients. Sci Rep 6:23213. https://doi.org/10.1038/srep23213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14(4):535–548. https://doi.org/10.1016/j.stem.2014.01.011

    Article  PubMed  CAS  Google Scholar 

  22. Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, Dalby A, Lampela R, Bouet G, Hobbs CM, Pask DC, Payne H, Ponomaryov T, Brill A, Soranzo N, Ouwehand WH, Pedersen RA, Ghevaert C (2016) Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 7:11208. https://doi.org/10.1038/ncomms11208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Merico V, Zuccotti M, Carpi D, Baev D, Mulas F, Sacchi L, Bellazzi R, Pastorelli R, Redi CA, Moratti R, Garagna S, Balduini A (2012) The genomic and proteomic blueprint of mouse megakaryocytes derived from embryonic stem cells. J Thromb Haemost 10(5):907–915. https://doi.org/10.1111/j.1538-7836.2012.04673.x

    Article  PubMed  CAS  Google Scholar 

  24. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35):5271–5279. https://doi.org/10.1016/j.biomaterials.2007.08.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL (2008) Gel spinning of silk tubes for tissue engineering. Biomaterials 29(35):4650–4657. https://doi.org/10.1016/j.biomaterials.2008.08.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work presented in this chapter was supported by Cariplo Foundation (2010-0807, 2013-0717) and US National Institutes of Health (R01 EB016041-01). Christian A. Di Buduo fellowship was funded by Collegio Ghislieri, Pavia, progetto “Progressi in Biologia e Medicina.” The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Balduini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Buduo, C.A., Abbonante, V., Tozzi, L., Kaplan, D.L., Balduini, A. (2018). Three-Dimensional Tissue Models for Studying Ex Vivo Megakaryocytopoiesis and Platelet Production. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes . Methods in Molecular Biology, vol 1812. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8585-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8585-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8584-5

  • Online ISBN: 978-1-4939-8585-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics