Skip to main content

Characterizing Surface-Immobilized DNA Structures and Devices Using a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

  • 1556 Accesses

Abstract

A quartz crystal microbalance with dissipation monitoring can be used to study the mass and structure of surface-immobilized layers of molecules, in real time. Here we describe the use of the technique to study DNA structures and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandran H, Gopalkrishnan N, Phillips A, Reif J (2011) Localized hybridization circuits. In: Cardelli L, Shih W (eds) DNA computing and molecular programming, DNA 2011, Pasadena. LNCS, vol 6937. Springer, Berlin, pp 64–83. https://doi.org/10.1007/978-3-642-23638-9_8

    Chapter  Google Scholar 

  2. Dunn KE, Morgan TL, Trefzer MA, Johnson SD, Tyrrell AM (2015) Surface-immobilized DNA molecular machines for information processing. In: Lones M, Tyrrell A, Smith S, Fogel G (eds) Information processing in cells and tissues, IPCAT 2015, San Diego. LNCS 9303. Springer, pp 3–12. https://doi.org/10.1007/978-3-318-23108-2_1

  3. Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29:5163–5168. https://doi.org/10.1093/nar/29.24.5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. White SJ, Johnson SD, Sellick MA, Bronowska A, Stockley PG, Wälti C (2015) The influence of two-dimensional organization on peptide conformation. Angew Chem Int Ed Engl 54:974–978. https://doi.org/10.1002/anie.201408971

    Article  CAS  PubMed  Google Scholar 

  5. Castronovo M, Lucesoli A, Parisse P, Kurnikova A, Malhotra A, Grassi M et al (2011) Two-dimensional enzyme diffusion in laterally confined DNA monolayers. Nat Commun 2:297. https://doi.org/10.1038/ncomms1296

    Article  CAS  PubMed  Google Scholar 

  6. Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19:151–158

    PubMed  PubMed Central  Google Scholar 

  7. Okahata Y, Matsunobu Y, Ijiro K, Mukae M, Murakami A, Makino K (1992) Hybridization of nucleic acids immobilised on a quartz crystal microbalance. J Am Chem Soc 114:8299–8300. https://doi.org/10.1021/ja00047a056

    Article  CAS  Google Scholar 

  8. Papadakis G, Tsortos A, Gizeli E (2010) Acoustic characterization of nanoswitch structures: application to the DNA Holliday junction. Nano Lett 10:5093–5097. https://doi.org/10.1021/nl103491v

    Article  CAS  PubMed  Google Scholar 

  9. Papadakis G, Tsortos A, Bender F, Ferapontova EE, Gizeli E (2012) Direct detection of DNA conformation in hybridization processes. Anal Chem 84:1854–1861. https://doi.org/10.1021/ac202515p

    Article  CAS  PubMed  Google Scholar 

  10. Dunn KE, Trefzer MA, Johnson S, Tyrrell AM (2016) Investigating the dynamics of surface-immobilized DNA nanomachines. Sci Rep 6:29581. https://doi.org/10.1038/srep29581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunn KE, Trefzer MA, Johnson S, Tyrrell AM (2016) Assessing the potential of surface-immobilized molecular logic machines for integration with solid state technology. BioSystems 146:3–9. https://doi.org/10.1016/j.biosystems.2016.05.006

    Article  CAS  Google Scholar 

  12. Dunn KE, Leake MC, Wollman AJM, Trefzer MA, Johnson S, Tyrrell AM (2017) An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor. R Soc Open Sci 4:160767. https://doi.org/10.1098/rsos.160767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koutsoumpeli E, Tiede C, Murray J, Tang A, Bon RS, Tomlinson DC, Johnson S (2017) Antibody mimetics for the detection of small organic compounds using a quartz crystal microbalance. Anal Chem 89:3051–3058. https://doi.org/10.1021/acs.analchem/6b04790

    Article  CAS  PubMed  Google Scholar 

  14. Chang EP, Roncal-Herrero T, Morgan T, Dunn KE, Rao A, Kunitake JAMR et al (2016) Synergistic biomineralization phenomena created by a combinatorial nacre protein model system. Biochemistry 55:2401–2410. https://doi.org/10.1021/acs.biochem.6b00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juan-Colás J, Parkin A, Dunn KE, Scullion MG, Krauss TF, Johnson SD (2016) The electrophotonic silicon biosensor. Nat Commun 7:12769. https://doi.org/10.1038/ncomms12769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Biolin Scientific (2014) Q-Sense E4 operating manual

    Google Scholar 

  17. Hellma Analytics (2017) Hellmanex® III: the special cleaning concentrate from Hellma. http://www.hellma-analytics.com/text/197/en/hellmanex%C2%AE-iii.html. Accessed 24 Mar 2017

Download references

Acknowledgments

We are grateful to EPSRC for funding through Platform Grant EP/K040820/1 and the University of York for an Institutional Equipment Grant, which funded the purchase of the QCM-D apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunn, K.E., Trefzer, M.A., Johnson, S., Tyrrell, A.M. (2018). Characterizing Surface-Immobilized DNA Structures and Devices Using a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics