Skip to main content

DNA-Assisted Molecular Lithography

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

During the past decade, DNA origami has become a popular method to build custom two- (2D) and three-dimensional (3D) DNA nanostructures. These programmable structures could further serve as templates for accurate nanoscale patterning, and therefore they could find uses in various biotechnological applications. However, to transfer the spatial information of DNA origami to metal nanostructures has been limited to either direct nanoparticle-based patterning or chemical growth of metallic seed particles that are attached to the DNA objects. Here, we present an alternative way by combining DNA origami with conventional lithography techniques. With this DNA-assisted lithography (DALI) method, we can create plasmonic, entirely metallic nanostructures in a highly accurate and parallel manner on different substrates. We demonstrate our technique by patterning a transparent substrate with discrete bowtie-shaped nanoparticles, i.e., “nanoantennas” or “optical antennas,” with a feature size of approximately 10 nm. Owing to the versatility of DNA origami, this method can be effortlessly generalized to other shapes and sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones MR, Seeman NC, Mirkin CA (2015) Programmable materials and the nature of the DNA bond. Science 347:1260901. https://doi.org/10.1126/science.1260901

    Article  CAS  PubMed  Google Scholar 

  2. Nummelin S, Kommeri J, Kostiainen MA, Linko V (2018) Evolution of structural DNA nanotechnology. Adv Mater 30:1703721. https://doi.org/10.1002/adma.201703721

    Article  Google Scholar 

  3. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  4. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418. https://doi.org/10.1038/nature08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linko V, Kostiainen MA (2016) Automated design of DNA origami. Nat Biotechnol 34:826–827. https://doi.org/10.1038/nbt.3647

    Article  CAS  PubMed  Google Scholar 

  6. Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, Dietz H, Simmel FC (2012) Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–936. https://doi.org/10.1126/science.1225624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Linko V, Nummelin S, Aarnos L, Tapio K, Toppari JJ, Kostiainen MA (2016) DNA-based enzyme reactors and systems. Nanomaterials 6:139. https://doi.org/10.3390/nano6080139

    Article  CAS  PubMed Central  Google Scholar 

  8. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E-M, Högele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314. https://doi.org/10.1038/nature10889

    Article  CAS  PubMed  Google Scholar 

  9. Linko V, Ora A, Kostiainen MA (2015) DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol 33:586–594. https://doi.org/10.1016/j.tibtech.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Maune HT, Han S, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61–66. https://doi.org/10.1038/nnano.2009.311

    Article  CAS  PubMed  Google Scholar 

  11. Shen B, Linko V, Dietz H, Toppari JJ (2015) Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide. Electrophoresis 36:255–262. https://doi.org/10.1002/elps.201400323

    Article  CAS  PubMed  Google Scholar 

  12. Tapio K, Leppiniemi J, Shen B, Hytönen VP, Fritzsche W, Toppari JJ (2016) Toward single electron nanoelectronics using self-assembled DNA structure. Nano Lett 16:6780–6786. https://doi.org/10.1021/acs.nanolett.6b02378

    Article  CAS  PubMed  Google Scholar 

  13. Gopinath A, Miyazono E, Faraon A, Rothemund PWK (2016) Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535:401–405. https://doi.org/10.1038/nature18287

    Article  CAS  PubMed  Google Scholar 

  14. Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132:3248–3249. https://doi.org/10.1021/ja9101198

    Article  CAS  PubMed  Google Scholar 

  15. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276. https://doi.org/10.1038/nnano.2011.49

    Article  CAS  PubMed  Google Scholar 

  16. Helmi S, Ziegler C, Kauert DJ, Seidel R (2014) Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett 14:6693–6698. https://doi.org/10.1021/nl503441v

    Article  CAS  PubMed  Google Scholar 

  17. Sun W, Boulais E, Hakobyan Y, Wang WL, Guan A, Bathe M, Yin P (2014) Casting inorganic structures with DNA molds. Science 346:1258361. https://doi.org/10.1126/science.1258361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pilo-Pais M, Goldberg S, Samano E, LaBean TH, Finkelstein G (2011) Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett 11:3489–3492. https://doi.org/10.1021/nl202066c

    Article  CAS  PubMed  Google Scholar 

  19. Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel SS, Nickels PC, Liedl T (2011) DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 7:1795–1799. https://doi.org/10.1002/smll.201100465

    Article  CAS  PubMed  Google Scholar 

  20. Shen B, Tapio K, Linko V, Kostiainen MA, Toppari JJ (2016) Metallic nanostructures based on DNA nanoshapes. Nanomaterials 6:146. https://doi.org/10.3390/nano6080146

    Article  CAS  PubMed Central  Google Scholar 

  21. Surwade SP, Zhou F, Wei B, Sun W, Powell A, O’Donnell C, Yin P, Liu H (2013) Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. J Am Chem Soc 135:6778–6781. https://doi.org/10.1021/ja401785h

    Article  CAS  PubMed  Google Scholar 

  22. Shen B, Linko V, Tapio K, Kostiainen MA, Toppari JJ (2015) Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale 7:11267–11272. https://doi.org/10.1039/c5nr02300a

    Article  CAS  PubMed  Google Scholar 

  23. Shen B, Linko V, Tapio K, Pikker S, Lemma T, Gopinath A, Gothelf KV, Kostiainen MA, Toppari JJ (2018) Plasmonic nanostructures through DNA-assisted lithography. Sci Adv 4:eaap8978. https://doi.org/10.1126/sciadv.aap8978

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih WM, Yan H (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908. https://doi.org/10.1021/ja906381y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229. https://doi.org/10.1038/nmeth.1570

    Article  CAS  PubMed  Google Scholar 

  26. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730. https://doi.org/10.1126/science.1174251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marty F, Rousseau L, Saadany B, Mercier B, Français O, Mita Y, Bourouina T (2005) Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures. Microelectron J 36:673–677. https://doi.org/10.1016/j.mejo.2005.04.039

    Article  CAS  Google Scholar 

  28. Linko V, Shen B, Tapio K, Toppari JJ, Kostiainen MA, Tuukkanen S (2015) One-step large-scale deposition of salt-free DNA origami nanostructures. Sci Rep 5:15634. https://doi.org/10.1038/srep15634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the Academy of Finland (projects 286845, 130900, 218182, 263526, 289947, 135193), Jane and Aatos Erkko Foundation, Sigrid Jusélius Foundation, Vilho, Yrjö and Kalle Väisälä Foundation and Finnish Cultural Foundation is gratefully acknowledged. This work was carried out under the Academy of Finland Centers of Excellence Programme (2014–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jussi Toppari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shen, B., Linko, V., Toppari, J.J. (2018). DNA-Assisted Molecular Lithography. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics