Skip to main content

DNA Origami Structures Interfaced to Inorganic Nanodevices

  • Protocol
  • First Online:
  • 1550 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

We describe here one way to achieve hybrid DNA–inorganic nanostructures on rigid flat insulating substrates. We report methods to prepare rectangular DNA origami and incubate them onto arrays of anchoring gold nanodots either in a static solution or in a microfluidic system. We give details on the design and lithographic methods employed to pattern usable arrays of gold nanoanchors on naturally oxidized silicon wafer chips. Scanning electron and atomic force microscopy methodological details are also given for obtaining the relevant characterizations of the immobilized and ordered DNA origami.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rothemund PWK (2006) Folding DNA to create Nanoscale shapes and patterns. Nature 440:297. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  2. Li H, LaBean TH, Kenan DJ (2006) Single-chain antibodies against DNA aptamers for use as adapter molecules on DNA tile arrays in nanoscale materials organization. Org Biomol Chem 4:3420. https://doi.org/10.1039/b606391h

    Article  CAS  PubMed  Google Scholar 

  3. Maune HT, Han S, Barish RD, Bockrath M, Goddard WA, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5:61. https://doi.org/10.1038/NNANO.2009.311

    Article  CAS  PubMed  Google Scholar 

  4. Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5:121. https://doi.org/10.1038/NNANO.2009.450

    Article  CAS  PubMed  Google Scholar 

  5. Voigt NV, Tørring T, Rotaru A, Jacobsen MF, Ravnsbæk JB, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf KV (2010) Single molecule chemical reactions on DNA origami. Nat Nanotechnol 5:200. https://doi.org/10.1038/NNANO.2010.5

    Article  CAS  PubMed  Google Scholar 

  6. Tintoré M, Gàllego I, Manning B, Eritja R, Fàbrega C (2013) DNA origami as a DNA repair Nanosensor at the single-molecule level. Angew Chem Int Ed 52:7747. https://doi.org/10.1002/anie.201301293

    Article  CAS  Google Scholar 

  7. Scheible MB, Pardatscher G, Kuzyk A, Simmel FC (2014) Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays. Nano Lett 14:1627. https://doi.org/10.1021/nl500092j

    Article  CAS  PubMed  Google Scholar 

  8. Tuukkanen S, Kuzyk A, Jussi Toppari J, Häkkinen H, Hytönen VP, Niskanen E, Rinkiö M, Törmä P (2007) Trapping of 27 bp-8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 18:295204. https://doi.org/10.1088/0957-4484/18/29/295204

    Article  CAS  Google Scholar 

  9. Wang R, Palma M, Penzo E, Wind SH (2013) Lithographically directed assembly of one-dimensional DNA nanostructures via bivalent binding interactions. Nano Res 6:409. https://doi.org/10.1007/s12274-013-0318-6

    Article  CAS  Google Scholar 

  10. Kim KN, Sarveswaran K, Mark L, Lieberman M (2010) DNA origami as self-assembling circuit boards. Unconventional Computation, Proceedings 6079:56

    Article  Google Scholar 

  11. Morales P, Wang L, Krissanaprasit A, Dalmastri C, Caruso M, De Stefano M, Mosiello L, Rapone B, Rinaldi A, Vespucci S, Vinther J, Retterer S, Gothelf KV (2016) Suspending DNA Origami Between Four Gold Nanodots. Small 12(2):169–173. https://doi.org/10.1002/smll.201501782

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Dalmastri C, Mosiello L, Rapone B, Retterer S, Krissanaprasit A, Gothelf KV, Morales P (2015) Coupling DNA Nano-breadboards to solid state conductors. EAI, Energia Ambiente, Innovazione 3:85–94

    Google Scholar 

  13. Kohler M, Fritzsche W (2007) Nanotechnology: an introduction to Nanostructuring techniques. Wiley-VCH, Weinheim

    Book  Google Scholar 

  14. Mohammad MA, Muhammad M, Dew SK, Stepanova M (2012) Fundamentals of electron beam exposure and development. In: Stepanova M, Dew S (eds) Nanofabrication. Springer-Verlag, Wien, pp 11–41. https://doi.org/10.1007/978-3-7091-0424-8_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dalmastri, C., Han, W., Vespucci, S., Wang, L., Morales, P. (2018). DNA Origami Structures Interfaced to Inorganic Nanodevices. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics