Skip to main content

Toward Confirmatory On-Site Real-Time Detection of Emerging Drugs Using Portable Ultrafast Capillary Electrophoresis Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1810))

Abstract

Currently, law enforcement agencies rely upon presumptive tests such as color tests (or spot tests) for on-site, real-time identification of forensic evidence, such as controlled substances. These tests are simple and easy to use and require no instrumentation. However, they are unreliable and have a large false positive rate. On the other hand, confirmatory tests are done in analytical laboratories using sophisticated instrumentation by expert analysts, and have lower false positive rates. However, they are bulky and impractical for on-site real-time analysis. To provide more accurate identification of forensic evidence on-site, in real-time, it is important to develop portable confirmatory instrumentation using information-rich technologies. Moreover, because the analysis of controlled substances could be complicated by the existence of various isomers (including optical isomers) it is desirable that the portable instruments have the capability to separate structural and optical isomers of the controlled substances, because scheduling is some times dependent upon which isomer is present. To this end, we have developed a portable ultrafast capillary electrophoresis (UFCE) system for the separation of controlled substances and their structural and optical isomers. The UFCE instrument has an integrated porous tip for facile interfacing with electrospray ionization mass spectrometry. The technique has been successfully applied to the analysis of mixtures of several controlled substances such as amphetamines, cathinones, nor-mephedrone, and pregabalin and their optical isomers in about a minute.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gabrielson R, Sanders T (2016) How a$2 roadside drug test sends innocent people to jail. New York Times, 7 July

    Google Scholar 

  2. Choodum A, Daeid NN (2011) Rapid and semi-quantitative presumptive tests for opiate drugs. Talanta 86:284

    Article  CAS  PubMed  Google Scholar 

  3. O’Neal CL, Crouch DJ, Fatah AA (2000) Validation of twelve chemical spot tests for the detection of drugs of abuse. Forensic Sci Int 109:189

    Article  PubMed  Google Scholar 

  4. Tsumura Y, Mitome T, Kimoto S (2005) False positives and false negatives with a cocaine-specific field test and modification of test protocol to reduce false decision. Forensic Sci Int 155:158

    Article  CAS  PubMed  Google Scholar 

  5. Isaacs RC (2014) A structure-reactivity relationship driven approach to the identification of a color test protocol for the presumptive indication of synthetic cannabimimetic drugs of abuse. Forensic Sci Int 242C:135

    Article  CAS  Google Scholar 

  6. Cuypers E, Bonneure A-J, Tytgat J (2016) The use of presumptive color tests for new psychoactive substances. Drug Test Anal 8:136–140

    Article  CAS  PubMed  Google Scholar 

  7. Shintani H, Polonsky J (eds) (1997) Handbook of capillary electrophoresis applications. Blackie Academic, New York

    Google Scholar 

  8. http://www.swgdrug.org/Documents/SWGDRUG%20Recommendations%20Version%2071.pdf

  9. Eckenrode BA (2001) Environmental and forensic applications of field-portable GC-MS: an overview. J Am Soc Mass Spectrom 12:683–693

    Article  CAS  PubMed  Google Scholar 

  10. Stout PR, Bynum ND, Lewallen CM, Mitchell JM, Baylor MR, Ropero-Miller JD (2010) A comparison of the validity of gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry analysis of urine samples II: amphetamine, methamphetamine, (±)-3,4-methylenedioxyamphetamine, (±)-3,4-methylenedioxymethamphetamine, (±)-3,4-methylenedioxyethylamphetamine, phencyclidine, and (±)-11-nor-9-carboxy-Δ9-tetrahydrocannabinol. J Anal Toxicol 34:430–443

    Article  CAS  PubMed  Google Scholar 

  11. Perez ER, Knapp JA, Horn CK, Stillman SL, Evans JE, Arfsten DP (2016) Comparison of LC–MS-MS and GC–MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. J Anal Toxicol 40:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marginean I, Rowe WF, Lurie IS (2015) The role of ultra high performance liquid chromatography with time of flight detection for the identification of synthetic cannabinoids in seized drugs. Forensic Sci Int 249:83–91

    Article  CAS  PubMed  Google Scholar 

  13. Logan BK, Reinhold LE, Allan X, Diamond FX (2012) Identification of synthetic cannabinoids in herbal incense blends in the United States. J Forensic Sci 57:1168–1180

    Article  CAS  PubMed  Google Scholar 

  14. Patton AL, Seely KA, Chimalakonda KC, Tran JP, Trass M, Miranda A, Fantegrossi WE, Kennedy PD, Dobrowolski P, Radominska-Pandya A, McCain KR, James LP, Endres GW, Moran JH (2013) Targeted metabolomic approach for assessing human synthetic cannabinoid exposure and pharmacology. Anal Chem 85:9390–9399

    Article  CAS  PubMed  Google Scholar 

  15. Fan L-Y, He T, Tang Y-Y, Zhang W, Song C-J, Zhao X, Zhao X-Y, Cao C-X (2012) Sensitive determination of barbiturates in biological matrix by capillary electrophoresis using online large-volume sample stacking. J Forensic Sci 57:813–819

    Article  CAS  PubMed  Google Scholar 

  16. Gottardo R, Fanigliulo A, Sorio D, Liotta E, Bortolotti F, Tagliaro F (2012) Monitoring compliance to therapy during addiction treatments by means of hair analysis for drugs and drug metabolites using capillary zone electrophoresis coupled to time-of-flight mass spectrometry. Forensic Sci Int 216:101–107

    Article  CAS  PubMed  Google Scholar 

  17. Liaua A-S, Liub J-T, Lina L-C, Chiua Y-C, Shua Y-R, Tsaia C-C, Lina C-H (2003) Optimization of a simple method for the chiral separation of methamphetamine and related compounds in clandestine tablets and urine samples by b-cyclodextrine modified capillary electrophoresis: a complementary method to GC–MS. Forensic Sci Int 134:17–24

    Article  CAS  Google Scholar 

  18. Caslavska J, Thormann W (2011) Stereoselective determination of drugs and metabolites in body fluids, tissues and microsomal preparations by capillary electrophoresis (2000–2010). J Chromatogr A 1218:588–601

    Article  CAS  PubMed  Google Scholar 

  19. Boatto G, Nieddu M, Carta A, Pau A, Palomba M, Asproni B, Cerri R (2005) Determination of amphetamine-derived designer drugs in human urine by SPE extraction and capillary electrophoresis with mass spectrometry detection. J Chromatogr B 814:93–98

    Article  CAS  Google Scholar 

  20. Blaschkea G, Chankvetadze B (2000) Enantiomer separation of drugs by capillary electromigration techniques. J Chromatogr A 875:3–25

    Article  Google Scholar 

  21. Huck CW, Huck-Pezzei V, Bakry R, Bachmann S, Najam-ul-Haq M, Rainer M, Bonn GK (2007) Capillary electrophoresis coupled to mass spectrometry for forensic analysis. Open Chem Eng J 1:30–43

    Article  CAS  Google Scholar 

  22. Mohr S, Pilaj S, Schmid MG (2012) Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis. Electrophoresis 33:1624–1630

    Article  CAS  PubMed  Google Scholar 

  23. Moini M, Rollman C (2015) Compatibility of highly sulfated cyclodextrin with electrospray ionization at low nanoliter/minute flow rates and its application to capillary electrophoresis/electrospray ionization mass spectrometric analysis of cathinone derivatives and their optical isomers. Rapid Commun Mass Spectrom 29:304–310

    Article  CAS  PubMed  Google Scholar 

  24. Moini M, Martinez B (2014) Ultrafast capillary electrophoresis mass spectrometry with adjustable porous tip for a rapid analysis of protein digest in about a minute. Rapid Commun Mass Spectrom 15:305–310

    Article  CAS  Google Scholar 

  25. Moini M, Rollman C (2016) Portable, battery operated capillary electrophoresis with optical isomer resolution integrated with ionization source for mass spectrometry. J Am Soc Mass Spectrom 27:388–393

    Article  CAS  PubMed  Google Scholar 

  26. Müller O, Minarik M, Foret F (1998) Ultrafast DNA analysis by capillary electrophoresis/laser-induced fluorescence detection. Electrophoresis 19:1436

    Article  PubMed  Google Scholar 

  27. DeCarlo PF, Kimmel JR, Trimborn A, Northway MJ, Jayne JT, Aiken AC, Gonin M, Fuhrer K, Horvath T, Docherty KS, Worsnop DR, Jimenez JL (2006) A field-deployable high-resolution time-of-flight aerosol mass spectrometer. Anal Chem 78:8281–8289

    Article  CAS  PubMed  Google Scholar 

  28. Graus M, Müller M, Hansel A (2010) High resolution PTR-TOF: quantification and formula confirmation of VOC in real time. J Am Soc Mass Spectrom 2:1037–1044

    Article  CAS  Google Scholar 

  29. Sulzer P, Hartungen E, Hanel G, Feil S, Winkler K, Mutschlechner P, Haidacher S, Schottkowsky R, Gunsch D, Seehauser H, Striednig M, Jürschik S, Breiev K, Lanza M, Herbig J, Märk L, Märk TD, Jordan A (2004) A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): high speed due to extreme sensitivity. Int J Mass Spectrom 368:1–5

    Article  CAS  Google Scholar 

  30. https://en.wikipedia.org/wiki/Miniature_mass_spectrometer

  31. Browne DL, Wright S, Deadman BJ, Dunnage S, Baxendale IR, Turner RM, Ley SV (2012) Continuous flow reaction monitoring using an on-line miniature mass spectrometer. Rapid Commun Mass Spectrom 26:1999–2000

    Article  CAS  PubMed  Google Scholar 

  32. Xu W, Manicke NE, Cooks RG, Ouyang Z (2010) Miniaturization of mass spectrometry analysis systems. JALA Charlottesv Va 15:433–439

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Mulligan CC, Vircks HE (2012) Advances in field-portable mass spectrometers for on-site analytics. The American Oil Chemists’ Society, October 2012. https://www.aocs.org/stay-informed/read-inform/featured-articles/advances-in-field-portable-mass-spectrometers-for-on-site-analytics-october-2012

  34. Moini M (2007) Simplifying CE-MS operation: 2. Interfacing low-flow separation technique to mass spectrometry using a porous tip. Anal Chem 79:4241–4246

    Article  CAS  PubMed  Google Scholar 

  35. Ramautar R, Oleg A (2011) Mayboroda CESI-MS: a new perspective for metabolic profiling of body fluids. Column 7:1–6

    Google Scholar 

  36. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  PubMed  Google Scholar 

  37. Kelly RT, Page JS, Zhao R, Qian W, Mottaz HM, Tang K, Smith RD (2008) Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reverse-phase LC-ESI-MS. Anal Chem 80:143

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt A, Karas M, Dulks T (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI. J Am Soc Mass Spectrom 14:492

    Article  CAS  PubMed  Google Scholar 

  39. Garza S, Chang S, Moini M (2007) Simplifying capillary electrophoresis–mass spectrometry operation: eliminating capillary derivatization by using self-coating background electrolytes. J Chromatogr A 1159:14–21

    Article  CAS  PubMed  Google Scholar 

  40. Rollman CM, Moini M (2016) Ultrafast capillary electrophoresis/mass spectrometry of controlled substances with optical isomer separation in about a minute. Rapid Commun Mass Spectrom 30:2070–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moini, M. (2018). Toward Confirmatory On-Site Real-Time Detection of Emerging Drugs Using Portable Ultrafast Capillary Electrophoresis Mass Spectrometry. In: Musah, R. (eds) Analysis of Drugs of Abuse. Methods in Molecular Biology, vol 1810. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8579-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8579-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8578-4

  • Online ISBN: 978-1-4939-8579-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics