Skip to main content

Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric Receptor–Receptor Interactions Using Radioligand Binding Autoradiography

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 140))

  • 625 Accesses

Abstract

G protein-coupled receptors (GPCRs) complexes and their allosteric receptor–receptor interactions represent a new fundamental principle in molecular medicine for integration of transmitter signals in the plasma membrane. The allosteric receptor–receptor interactions in heteroreceptor complexes give diversity, specificity, and bias to the receptor protomers due to conformational changes in discrete domains leading to changes in receptor protomer function and their pharmacology. Therefore, a novel understanding of the molecular basis of central nervous system diseases should consider this phenomena and new strategies for mental and neurodegenerative disorders treatment should target heteroreceptor complexes based on a new pharmacology with combined treatment, multi-targeted drugs and heterobivalent drugs. In this chapter, it is described a technique to visualize the majority of G protein-coupled receptor allosteric receptor–receptor interactions in sections of frozen brain tissue using receptor autoradiography. The basic procedure involves incubating slide-mounted tissue sections with radioligands, washing and drying of the sections with specifically bound ligands under conditions that preserve ligand binding, and visualizing and quantifying the binding sites in the tissues. Protocols for brain extraction and sectioning, radioligand exposure, autoradiogram generation, and data quantification are provided, as are the optimal incubation conditions for the autoradiographic visualization of allosteric receptor–receptor interactions using agonist and antagonist radioligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marjorie A (1998) Receptor localization. Laboratory methods and procedures. Wiley, New York

    Google Scholar 

  2. Baker JR (1989) Autoradiography: a comprehensive overview. Oxford University Press, Oxford

    Google Scholar 

  3. Rogers AW (1979) Techniques of autoradiography. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  4. Fuxe K, Agnati LF, Benfenati F, Andersson K, Camurri M, Zoli M (1983) Evidence for the existence of a dopamine receptor of the D-1 type in the rat median eminence. Neurosci Lett 43(2–3):185–190

    Article  CAS  PubMed  Google Scholar 

  5. Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hokfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113(4):567–569

    Article  CAS  PubMed  Google Scholar 

  6. Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, Mutt V (1983) Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 18:165–179

    PubMed  CAS  Google Scholar 

  7. Fior DR, Hedlund PB, Fuxe K (1993) Autoradiographic evidence for a bradykinin/angiotensin II receptor-receptor interaction in the rat brain. Neurosci Lett 163(1):58–62

    Article  CAS  PubMed  Google Scholar 

  8. Narvaez M, Borroto-Escuela DO, Millon C, Gago B, Flores-Burgess A, Santin L, Fuxe K, Narvaez JA, Diaz-Cabiale Z (2016) Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Struct Funct 221(8):4129–4139. https://doi.org/10.1007/s00429-015-1153-1

    Article  PubMed  CAS  Google Scholar 

  9. Watson JT, Adkins-Regan E, Whiting P, Lindstrom JM, Podleski TR (1988) Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata). J Comp Neurol 274(2):255–264. https://doi.org/10.1002/cne.902740209

    Article  PubMed  CAS  Google Scholar 

  10. Diaz-Cabiale Z, Parrado C, Narvaez M, Puigcerver A, Millon C, Santin L, Fuxe K, Narvaez JA (2011) Galanin receptor/neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacology 61(1–2):80–86. https://doi.org/10.1016/j.neuropharm.2011.03.002

    Article  PubMed  CAS  Google Scholar 

  11. Millon C, Flores-Burgess A, Narvaez M, Borroto-Escuela DO, Santin L, Gago B, Narvaez JA, Fuxe K, Diaz-Cabiale Z (2016) Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct 221(9):4491–4504. https://doi.org/10.1007/s00429-015-1180-y

    Article  PubMed  CAS  Google Scholar 

  12. Flores-Burgess A, Millon C, Gago B, Narvaez M, Borroto-Escuela DO, Mengod G, Narvaez JA, Fuxe K, Santin L, Diaz-Cabiale Z (2017) Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacology 118:233–241. https://doi.org/10.1016/j.neuropharm.2017.03.010

    Article  PubMed  CAS  Google Scholar 

  13. Diaz-Cabiale Z, Parrado C, Rivera A, de la Calle A, Agnati L, Fuxe K, Narvaez JA (2006) Galanin-neuropeptide Y (NPY) interactions in central cardiovascular control: involvement of the NPY Y receptor subtype. Eur J Neurosci 24(2):499–508. https://doi.org/10.1111/j.1460-9568.2006.04937.x

    Article  PubMed  Google Scholar 

  14. Parrado C, Diaz-Cabiale Z, Garcia-Coronel M, Agnati LF, Covenas R, Fuxe K, Narvaez JA (2007) Region specific galanin receptor/neuropeptide Y Y1 receptor interactions in the tel- and diencephalon of the rat. Relevance for food consumption. Neuropharmacology 52(2):684–692. https://doi.org/10.1016/j.neuropharm.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  15. Narvaez M, Millon C, Borroto-Escuela D, Flores-Burgess A, Santin L, Parrado C, Gago B, Puigcerver A, Fuxe K, Narvaez JA, Diaz-Cabiale Z (2015) Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Struct Funct 220(4):2289–2301. https://doi.org/10.1007/s00429-014-0788-7

    Article  PubMed  CAS  Google Scholar 

  16. Herkenham M, Pert CB (1982) Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J Neurosci 2(8):1129–1149

    Article  CAS  PubMed  Google Scholar 

  17. Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol Pharmacol 11(3):340–351

    PubMed  CAS  Google Scholar 

  18. Rainbow TC, Biegon A, Berck DJ (1984) Quantitative receptor autoradiography with tritium-labeled ligands: comparison of biochemical and densitometric measurements. J Neurosci Methods 11(4):231–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Medical Research Council (62X-00715-50-3) to K.F., by ParkinsonFonden 2015, 2016 and 2017, AFA Försäkring (130328) to K.F., and by Hjärnfonden (FO2016-0302) and Karolinska Institutet Forskningsstiftelser (2016–2017) to D.O.B-E. D.O.B-E. belongs to the “Academia de Biólogos Cubanos” group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Narvaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Narvaez, M., Corrales, F., Brito, I., Valladolid-Acebes, I., Fuxe, K., Borroto-Escuela, D.O. (2018). Analysis and Quantification of GPCR Heteroreceptor Complexes and Their Allosteric Receptor–Receptor Interactions Using Radioligand Binding Autoradiography. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics