Skip to main content

Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 140))

Abstract

Whereas ionotropic receptors have been considered as functional units consisting of interacting subunits, G protein-coupled receptors were considered as monomeric cell surface receptors. Experimental evidence from the end of the twentieth century has demonstrated that GPCR may also form dimers, trimers, and even high-order oligomers. Novel techniques (BRET, FRET, SRET) to detect interactions between GPCRs have appeared that led to a substantial advancement in the field, i.e., to identify an ever-increasing number of GPCR homo- and heteroreceptor complexes. A main drawback of these techniques is that they cannot be applied to detection of receptor complexes in brain. Fortunately, novel techniques and novel concepts such as the heteromer signature may be used now to detect GPCR complexes in specific brain regions and in specific neuronal and/or glial cells. Remarkably those techniques make now possible to detect and give insight into the function of receptors formed by even three GPCRs or by two GPCRs and one ionotropic receptor such as the NMDA glutamate receptor. The central nervous system has been the main target for such a revolution in understanding how cell surface receptors participate in neurotransmission and/or regulate cell signaling and fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen PE, Wyllie DJA (2006) Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. Br J Pharmacol 147:839–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodríguez-Ruiz M et al (2017) Heteroreceptor complexes formed by dopamine D1, histamine H3, and N-methyl-D-aspartate glutamate receptors as targets to prevent neuronal death in Alzheimer’s disease. Mol Neurobiol 54:4537–4550

    Article  CAS  PubMed  Google Scholar 

  3. Wang M, Wong AH, Liu F (2012) Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res 1476:154–163

    Article  CAS  PubMed  Google Scholar 

  4. Fiorentini C, Missale C (2004) Oligomeric assembly of dopamine D1 and glutamate NMDA receptors: molecular mechanisms and functional implications. Biochem Soc Trans 32:1025–1028

    Article  CAS  PubMed  Google Scholar 

  5. Truitt KE, Hicks CM, Imboden JB (1994) Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells. J Exp Med 179:1071–1076

    Article  CAS  PubMed  Google Scholar 

  6. Rodgers W, Crise B, Rose JK (1994) Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14:5384–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Geer P (2014) in. Methods Enzymol 541:35–47

    Article  CAS  PubMed  Google Scholar 

  8. Kim YJ et al (1993) Novel T cell antigen 4-1BB associates with the protein tyrosine kinase p56lck1. J Immunol 151:1255–1262

    PubMed  CAS  Google Scholar 

  9. Fraser JD, Goldsmith MA, Weiss A (1989) Ligand-induced association between the T-cell antigen receptor and two glycoproteins. Proc Natl Acad Sci U S A 86:7133–7137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navarro G et al (2012) NCS-1 associates with adenosine A2A receptors and modulates receptor function. Front Mol Neurosci 5:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Héroux M, Hogue M, Lemieux S, Bouvier M (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 282:31610–31620

    Article  CAS  PubMed  Google Scholar 

  12. Navarro G et al (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. ScientificWorldJournal 8:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Navarro G et al (2013) Detection of receptor heteromers involving dopamine receptors by the sequential BRET-FRET technology. Methods Mol Biol 964:95–105

    Article  CAS  PubMed  Google Scholar 

  14. Carriba P et al (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5:727–733

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249

    Article  CAS  PubMed  Google Scholar 

  16. Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G (2016) Basic pharmacological and structural evidence for Class A G-protein-coupled receptor heteromerization. Front Pharmacol 7:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Callén L et al (2012) Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem 287:20851–20865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martínez-Pinilla E et al (2014) CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol 261:44–52

    Article  CAS  PubMed  Google Scholar 

  19. Balenga NA et al (2014) Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br J Pharmacol 171:5387–5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferrada C et al (2009) Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol 157:64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moreno E et al (2011) Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem 286:5846–5854

    Article  CAS  PubMed  Google Scholar 

  22. Martínez-Pinilla E et al (2015) Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol 96:131–142

    Article  CAS  PubMed  Google Scholar 

  23. Borroto-Escuela DO et al (2016) Receptor and ion channel detection in the brain. Humana, New York, pp 109–124

    Book  Google Scholar 

  24. Navarro G et al (2018) Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav Immun 67:139–151. https://doi.org/10.1016/j.bbi.2017.08.015

    Article  PubMed  CAS  Google Scholar 

  25. Rico AJ et al (2017) Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Struct Funct 222:1767–1784

    Article  CAS  PubMed  Google Scholar 

  26. Farré D et al (2014) Stronger dopamine D1 receptor-mediated neurotransmission in dyskinesia. Mol Neurobiol 52:1408–1420. https://doi.org/10.1007/s12035-014-8936-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by BFU-64405-R grant from the Spanish Ministry of Industry and Competitiveness (it may contain FEDER funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reyes-Resina, I., Martínez-Pinilla, E., Borroto-Escuela, D.O., Fuxe, K., Navarro, G., Franco, R. (2018). Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics