Skip to main content

Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Abstract

There is a large body of biochemical and biophysical experimental evidences which establishes the existence of G protein-coupled receptors (GPCRs) as homo- and heteroreceptor complexes. The results indicate that there are allosteric interactions across the receptor–receptor interface of homo- and heteroreceptor complexes that modulate the binding properties of their receptor protomer components in terms of affinity and density, and thereby change their pharmacology. In the adenosine A2A-dopamine D2 heteroreceptor complexes (A2AR-D2R), the activation of the A2AR protomer by its standard receptor agonist CGS21680 causes a conformational change in the A2AR-D2R heteroreceptor complex. The allosteric wave passes over the receptor interface, invades the orthostatic dopamine binding site of the dopamine D2R protomer, and reduces the affinity of the high but not the low affinity D2R agonist binding site. In view of the complex nature of allosteric mechanisms, the detection, analysis, and quantification of the effects of this phenomenon rely on the use of competition radioligand binding assays to ensure proper demonstration of the high and low affinity D2R agonist binding sites. Outlined in this chapter is simple but useful experimental approaches for measuring the allosteric receptor–receptor interactions at GPCR heteroreceptor complexes. The readers will also find tips and discussion on the pitfalls of these assay and instructions for data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borroto-Escuela DO, Narvaez M, Wydra K, Pintsuk J, Pinton L, Jimenez-Beristain A, Di Palma M, Jastrzebska J, Filip M, Fuxe K (2017) Cocaine self-administration specifically increases A2AR-D2R and D2R-sigma1R heteroreceptor complexes in the rat nucleus accumbens shell. Relevance for cocaine use disorder. Pharmacol Biochem Behav 155:24–31. https://doi.org/10.1016/j.pbb.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  2. Borroto-Escuela DO, Narvaez M, Perez-Alea M, Tarakanov AO, Jimenez-Beristain A, Mudo G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2015) Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun 456(1):489–493. https://doi.org/10.1016/j.bbrc.2014.11.112

    Article  PubMed  CAS  Google Scholar 

  3. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuellar F, Mocci G, Seto J, Callado LF, Neve RL, Milligan G, Sealfon SC, Lopez-Gimenez JF, Meana JJ, Benson DL, Gonzalez-Maeso J (2012) Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem 287(53):44301–44319. https://doi.org/10.1074/jbc.M112.413161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jonas KC, Huhtaniemi I, Hanyaloglu AC (2016) Single-molecule resolution of G protein-coupled receptor (GPCR) complexes. Methods Cell Biol 132:55–72. https://doi.org/10.1016/bs.mcb.2015.11.005

    Article  PubMed  Google Scholar 

  5. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5(9):688–695. https://doi.org/10.1038/nchembio.199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Navarro G, Borroto-Escuela D, Angelats E, Etayo I, Reyes-Resina I, Pulido-Salgado M, Rodriguez-Perez AI, Canela EI, Saura J, Lanciego JL, Labandeira-Garcia JL, Saura CA, Fuxe K, Franco R (2018) Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia. Brain Behav Immun 67:139–151. https://doi.org/10.1016/j.bbi.2017.08.015

    Article  PubMed  CAS  Google Scholar 

  7. Schellekens H, De Francesco PN, Kandil D, Theeuwes WF, McCarthy T, van Oeffelen WE, Perello M, Giblin L, Dinan TG, Cryan JF (2015) Ghrelin’s orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chem Neurosci 6(7):1186–1197. https://doi.org/10.1021/cn500318q

    Article  PubMed  CAS  Google Scholar 

  8. Zheng Y, Akgun E, Harikumar KG, Hopson J, Powers MD, Lunzer MM, Miller LJ, Portoghese PS (2009) Induced association of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by novel bivalent ligands. J Med Chem 52(2):247–258. https://doi.org/10.1021/jm800174p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, Duchou J, Van Craenenbroeck K, Suarez-Boomgaard D, Rivera A, Guidolin D, Agnati LF, Fuxe K (2014) The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 15(5):8570–8590. https://doi.org/10.3390/ijms15058570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Borroto-Escuela DO, Fuxe K (2017) Diversity and bias through dopamine D2R heteroreceptor complexes. Curr Opin Pharmacol 32:16–22. https://doi.org/10.1016/j.coph.2016.10.004

    Article  PubMed  CAS  Google Scholar 

  11. Borroto-Escuela DO, Wydra K, Pintsuk J, Narvaez M, Corrales F, Zaniewska M, Agnati LF, Franco R, Tanganelli S, Ferraro L, Filip M, Fuxe K (2016) Understanding the functional plasticity in neural networks of the basal ganglia in cocaine use disorder: a role for allosteric receptor-receptor interactions in A2A-D2 heteroreceptor complexes. Neural Plast 2016:4827268. https://doi.org/10.1155/2016/4827268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor-receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology 41(1):380–382. https://doi.org/10.1038/npp.2015.244

    Article  PubMed  CAS  Google Scholar 

  13. Pintsuk J, Borroto-Escuela DO, Lai TK, Liu F, Fuxe K (2016) Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: relevance for schizophrenia. Life Sci 167:92–97

    Article  CAS  Google Scholar 

  14. Borroto-Escuela DO, Brito I, Di Palma M, Jiménez-Beristain A, Narvaez M, Corrales F, Pita-Rodríguez M, Sartini S, Ambrogini P, Lattanzi D, Cuppini R, Agnati LF, Fuxe K (2015) On the role of the balance of GPCR homo/heteroreceptor complexes in the brain. J Adv Neurosci Res 2:36–44

    Article  Google Scholar 

  15. Fuxe K, Agnati LF, Borroto-Escuela DO (2014) The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 14(7):719–721. https://doi.org/10.1586/14737175.2014.922878

    Article  PubMed  CAS  Google Scholar 

  16. Fuxe K, Borroto-Escuela D, Fisone G, Agnati LF, Tanganelli S (2014) Understanding the role of heteroreceptor complexes in the central nervous system. Curr Protein Pept Sci 15(7):647

    Article  CAS  PubMed  Google Scholar 

  17. Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF (2014) Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. Neurosci Discov 2(1):6. https://doi.org/10.7243/2052-6946-2-6

    Article  Google Scholar 

  18. Agnati LF, Fuxe K, Zini I, Lenzi P, Hokfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58(4):182–187

    PubMed  CAS  Google Scholar 

  19. Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hokfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113(4):567–569

    Article  CAS  PubMed  Google Scholar 

  20. Fuxe K, Agnati LF, Benfenati F, Celani M, Zini I, Zoli M, Mutt V (1983) Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 18:165–179

    CAS  PubMed  Google Scholar 

  21. Limbird LE, Meyts PD, Lefkowitz RJ (1975) Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun 64(4):1160–1168. doi: 0006-291X(75)90815-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Birdsall NJM (1982) Can different receptors interact directly with each other? Trends Neurosci 5:137–138

    Article  CAS  Google Scholar 

  23. Zoli M, Agnati LF, Hedlund PB, Li XM, Ferre S, Fuxe K (1993) Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 7(3–4):293–334. https://doi.org/10.1007/BF02769180

    Article  PubMed  CAS  Google Scholar 

  24. Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60(4):183–190

    PubMed  CAS  Google Scholar 

  25. Koshland DE Jr, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385

    Article  CAS  Google Scholar 

  26. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  27. Tsai CJ, Del Sol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5(3):207–216. https://doi.org/10.1039/b819720b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fuxe K, Agnati LF (1987) Receptor-receptor interactions. A new intramembrane integrative mechanisms. McMillan Press, London

    Google Scholar 

  29. Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31(11):499–508. https://doi.org/10.1016/j.tips.2010.08.003

    Article  PubMed  CAS  Google Scholar 

  30. Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35. https://doi.org/10.1007/978-1-61779-160-4_1

    Article  PubMed  CAS  Google Scholar 

  31. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54(2):323–374

    Article  CAS  PubMed  Google Scholar 

  32. Borroto-Escuela DO, Marcellino D, Narvaez M, Flajolet M, Heintz N, Agnati L, Ciruela F, Fuxe K (2010) A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R. Biochem Biophys Res Commun 394(1):222–227. https://doi.org/10.1016/j.bbrc.2010.02.168

    Article  PubMed  CAS  Google Scholar 

  33. Cottet M, Faklaris O, Falco A, Trinquet E, Pin JP, Mouillac B, Durroux T (2013) Fluorescent ligands to investigate GPCR binding properties and oligomerization. Biochem Soc Trans 41(1):148–153. https://doi.org/10.1042/BST20120237

    Article  PubMed  CAS  Google Scholar 

  34. Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E, Pin JP, Durroux T (2012) BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol 3:92. https://doi.org/10.3389/fendo.2012.00092

    Article  Google Scholar 

  35. Comps-Agrar L, Maurel D, Rondard P, Pin JP, Trinquet E, Prezeau L (2011) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to G protein-coupled receptor oligomerization. Methods Mol Biol 756:201–214. https://doi.org/10.1007/978-1-61779-160-4_10

    Article  PubMed  CAS  Google Scholar 

  36. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Ciruela F, Agnati LF, Fuxe K (2011) On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J Mol Biol 406(5):687–699. https://doi.org/10.1016/j.jmb.2011.01.022

    Article  PubMed  CAS  Google Scholar 

  37. Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61(4):770–777. https://doi.org/10.1016/j.neuropharm.2011.05.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284. https://doi.org/10.1016/j.bbrc.2013.11.104

    Article  PubMed  CAS  Google Scholar 

  39. Hill SJ, May LT, Kellam B, Woolard J (2014) Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 171(5):1102–1113. https://doi.org/10.1111/bph.12345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88(16):7238–7241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barki-Harrington L, Luttrell LM, Rockman HA (2003) Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation 108(13):1611–1618. https://doi.org/10.1161/01.CIR.0000092166.30360.78

    Article  PubMed  CAS  Google Scholar 

  42. Dasgupta S, Li XM, Jansson A, Finnman UB, Matsui T, Rinken A, Arenas E, Agnati LF, Fuxe K (1996) Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells cotransfected with human CCKB and D2L receptor cDNAs. Brain Res Mol Brain Res 36(2):292–299

    Article  CAS  PubMed  Google Scholar 

  43. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Gomez-Soler M, Corrales F, Marcellino D, Narvaez M, Frankowska M, Flajolet M, Heintz N, Agnati LF, Ciruela F, Fuxe K (2010) Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys Res Commun 402(4):801–807. https://doi.org/10.1016/j.bbrc.2010.10.122

    Article  PubMed  CAS  Google Scholar 

  44. Perron A, Sharif N, Sarret P, Stroh T, Beaudet A (2007) NTS2 modulates the intracellular distribution and trafficking of NTS1 via heterodimerization. Biochem Biophys Res Commun 353(3):582–590. https://doi.org/10.1016/j.bbrc.2006.12.062

    Article  PubMed  CAS  Google Scholar 

  45. Koschatzky S, Tschammer N, Gmeiner P (2011) Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. ACS Chem Neurosci 2(6):308–316. https://doi.org/10.1021/cn200020y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pfeiffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schroder H, Hollt V, Schulz S (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem 278(51):51630–51637. https://doi.org/10.1074/jbc.M307095200

    Article  PubMed  CAS  Google Scholar 

  47. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 277(22):19762–19772. https://doi.org/10.1074/jbc.M110373200

    Article  PubMed  CAS  Google Scholar 

  48. Romero-Fernandez W, Borroto-Escuela DO, Agnati LF, Fuxe K (2013) Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol Psychiatry 18(8):849–850. https://doi.org/10.1038/mp.2012.103

    Article  PubMed  CAS  Google Scholar 

  49. Borroto-Escuela DO, Li X, Tarakanov AO, Savelli D, Narvaez M, Shumilov K, Andrade-Talavera Y, Jimenez-Beristain A, Pomierny B, Diaz-Cabiale Z, Cuppini R, Ambrogini P, Lindskog M, Fuxe K (2017) Existence of brain 5-HT1A-5-HT2A isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-HT1A receptor recognition. ACS Omega 2(8):4779–4789. https://doi.org/10.1021/acsomega.7b00629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mahoney JP, Sunahara RK (2016) Mechanistic insights into GPCR-G protein interactions. Curr Opin Struct Biol 41:247–254. https://doi.org/10.1016/j.sbi.2016.11.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Komolov KE, Benovic JL (2017) G protein-coupled receptor kinases: past, present and future. Cell Signal 41:17–24. https://doi.org/10.1016/j.cellsig.2017.07.004

    Article  PubMed  CAS  Google Scholar 

  52. Fuxe K, Ferre S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 26(2–3):258–273

    Article  CAS  PubMed  Google Scholar 

  53. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J, Schmauss C, Slattman M, Gullberg M, Javitch JA (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques 51(2):111–118. https://doi.org/10.2144/000113719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO, Palkovits M, Agnati LF, Fuxe K (2013) G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 521:281–294. https://doi.org/10.1016/B978-0-12-391862-8.00015-6

    Article  PubMed  CAS  Google Scholar 

  55. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 39(1):131–155. https://doi.org/10.1038/npp.2013.242

    Article  PubMed  CAS  Google Scholar 

  56. Filip M, Frankowska M, Zaniewska M, Przegalinski E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077(1):67–80. https://doi.org/10.1016/j.brainres.2006.01.038

    Article  PubMed  CAS  Google Scholar 

  57. Filip M, Zaniewska M, Frankowska M, Wydra K, Fuxe K (2012) The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction. Curr Med Chem 19(3):317–355

    Article  CAS  PubMed  Google Scholar 

  58. Wydra K, Golembiowska K, Suder A, Kaminska K, Fuxe K, Filip M (2015) On the role of adenosine (A)(2)A receptors in cocaine-induced reward: a pharmacological and neurochemical analysis in rats. Psychopharmacology 232(2):421–435. https://doi.org/10.1007/s00213-014-3675-2

    Article  PubMed  CAS  Google Scholar 

  59. Wydra K, Golembiowska K, Zaniewska M, Kaminska K, Ferraro L, Fuxe K, Filip M (2013) Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. Addict Biol 18(2):307–324. https://doi.org/10.1111/adb.12031

    Article  PubMed  CAS  Google Scholar 

  60. O’Neill CE, Hobson BD, Levis SC, Bachtell RK (2014) Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A 2A receptors during extinction training in rats. Psychopharmacology 231(16):3179–3188. https://doi.org/10.1007/s00213-014-3489-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. O’Neill CE, LeTendre ML, Bachtell RK (2012) Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 37(5):1245–1256. https://doi.org/10.1038/npp.2011.312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Medical Research Council (62X-00715-50-3) to K.F., by ParkinsonFonden 2015, 2016 and 2017, AFA Försäkring (130328) to K.F., and by Hjärnfonden (FO2016-0302) and Karolinska Institutet Forskningsstiftelser (2016–2017) to D.O.B-E. D.O.B-E. belongs to the “Academia de Biólogos Cubanos” group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Fuxe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borroto-Escuela, D.O. et al. (2018). Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics