Skip to main content

Mouse Models of Acute Lung Injury and ARDS

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1809))

Abstract

The acute respiratory distress syndrome (ARDS) is a devastating illness characterized by severe hypoxemia and diffuse alveolar damage. Direct lung infection is the leading cause of ARDS and can be modeled in mice using sterile models of inflammation or live pathogens. In this chapter, two mouse models for ARDS are defined. These include an infectious model of ARDS driven by direct administration of Streptococcus pneumoniae and a sterile inflammatory model mediated by intratracheal administration of lipopolysaccharide. Methods for growth and preparation of Streptococcus pneumoniae are provided as methods to assess lung inflammation and injury.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rubenfeld GD, Caldwell E, Peabody E et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353(16):1685–1693

    Article  CAS  PubMed  Google Scholar 

  2. Force ADT, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23):2526–2533

    Google Scholar 

  3. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122(8):2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349

    Article  CAS  PubMed  Google Scholar 

  5. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379–L399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lingappan K, Jiang W, Wang L, Couroucli XI, Barrios R, Moorthy B (2013) Sex-specific differences in hyperoxic lung injury in mice: implications for acute and chronic lung disease in humans. Toxicol Appl Pharmacol 272(2):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lingappan K, Jiang W, Wang L, Moorthy B (2016) Sex-specific differences in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 311(2):L481–L493

    Article  PubMed  PubMed Central  Google Scholar 

  8. Redente EF, Jacobsen KM, Solomon JJ et al (2011) Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 301(4):L510–L518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Speyer CL, Rancilio NJ, McClintock SD et al (2005) Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol 288(4):C881–C890

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki T, Shimizu T, Yu HP, Hsieh YC, Choudhry MA, Chaudry IH (2007) Salutary effects of 17beta-estradiol on T-cell signaling and cytokine production after trauma-hemorrhage are mediated primarily via estrogen receptor-alpha. Am J Physiol Cell Physiol 292(6):C2103–C2111

    Article  CAS  PubMed  Google Scholar 

  11. Guilbault C, Stotland P, Lachance C et al (2002) Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection with Pseudomonas aeruginosa in mice. Immunology 107(3):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carey MA, Card JW, Voltz JW, Germolec DR, Korach KS, Zeldin DC (2007) The impact of sex and sex hormones on lung physiology and disease: lessons from animal studies. Am J Physiol Lung Cell Mol Physiol 293(2):L272–L278

    Article  CAS  PubMed  Google Scholar 

  13. Prows DR, Shertzer HG, Daly MJ, Sidman CL, Leikauf GD (1997) Genetic analysis of ozone-induced acute lung injury in sensitive and resistant strains of mice. Nat Genet 17(4):471–474

    Article  CAS  PubMed  Google Scholar 

  14. Dodd-o JM, Hristopoulos ML, Welsh-Servinsky LE, Tankersley CG, Pearse DB (2006) Strain-specific differences in sensitivity to ischemia-reperfusion lung injury in mice. J Appl Physiol (1985) 100(5):1590–1595

    Article  CAS  Google Scholar 

  15. Kling KM, Lopez-Rodriguez E, Pfarrer C, Muhlfeld C, Brandenberger C (2017) Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 312(1):L1–L12

    Article  PubMed  Google Scholar 

  16. McGrath-Morrow SA, Lee S, Gibbs K et al (2015) Immune response to intrapharyngeal LPS in neonatal and juvenile mice. Am J Respir Cell Mol Biol 52(3):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Alessio FR, Tsushima K, Aggarwal NR et al (2009) CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 119(10):2898–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Alessio FR, Tsushima K, Aggarwal NR et al (2012) Resolution of experimental lung injury by monocyte-derived inducible nitric oxide synthase. J Immunol 189(5):2234–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singer BD, Mock JR, Aggarwal NR et al (2015) Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am J Respir Cell Mol Biol 52:641–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal NR, Tsushima K, Eto Y et al (2014) Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation. J Immunol 192(9):4453–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R56HL131812 and DoD W81XWH-16-1-0510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco R. D’Alessio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

D’Alessio, F.R. (2018). Mouse Models of Acute Lung Injury and ARDS. In: Alper, S., Janssen, W. (eds) Lung Innate Immunity and Inflammation. Methods in Molecular Biology, vol 1809. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8570-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8570-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8569-2

  • Online ISBN: 978-1-4939-8570-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics