Skip to main content

Application of Proteomics in Lung Research

  • Protocol
  • First Online:
Lung Innate Immunity and Inflammation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1809))

Abstract

Proteomics has enabled researchers to evaluate global protein changes in a relatively rapid and comprehensive manner. Applications of these technologies in lung research include biomarker and drug discovery, elucidating disease mechanisms, and quantitative clinical assays. Two common workflows exist for quantitative proteomics studies that are aimed at determining differences in protein levels: label-free and labeling methods. Here we describe specific techniques involved in both quantitative workflows; these include extensive sample preparation methods for several lung-specific sample types. Methods are also included for mass spectrometry-based sample analysis and data analysis. While the focus is on quantitative, clinical proteomics, these strategies are appropriate for a wide array of sample types and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paone G, Leone V, Conti V, De Marchis L, Ialleni E, Graziani C, Salducci M, Ramaccia M, Munafo G (2016) Blood and sputum biomarkers in COPD and asthma: a review. Eur Rev Med Pharmacol Sci 20(4):698–708

    PubMed  CAS  Google Scholar 

  2. Priyadharshini VS, Teran LM (2016) Personalized medicine in respiratory disease: role of proteomics. Adv Protein Chem Struct Biol 102:115–146. https://doi.org/10.1016/bs.apcsb.2015.11.008

    Article  PubMed  CAS  Google Scholar 

  3. Terracciano R, Pelaia G, Preiano M, Savino R (2015) Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl 9(1–2):203–220. https://doi.org/10.1002/prca.201400099

    Article  PubMed  CAS  Google Scholar 

  4. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. https://doi.org/10.1038/nature01511

    Article  PubMed  CAS  Google Scholar 

  5. Tao WA, Aebersold R (2003) Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol 14(1):110–118

    Article  CAS  PubMed  Google Scholar 

  6. Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16(11–12):1678–1689. https://doi.org/10.1002/pmic.201600003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Quon BS, Dai DL, Hollander Z, Ng RT, Tebbutt SJ, Man SF, Wilcox PG, Sin DD (2016) Discovery of novel plasma protein biomarkers to predict imminent cystic fibrosis pulmonary exacerbations using multiple reaction monitoring mass spectrometry. Thorax 71(3):216–222. https://doi.org/10.1136/thoraxjnl-2014-206710

    Article  PubMed  Google Scholar 

  8. Mrozinski P, Zolotarjova N, Chen H (2008) Human serum and plasma protein depletion—novel high-capacity affinity column for the removal of the “Top 14”abundant proteins. Agilent Technologies Application Note, Santa Clara, CA

    Google Scholar 

  9. Chahrour O, Cobice D, Malone J (2015) Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 113:2–20. https://doi.org/10.1016/j.jpba.2015.04.013

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Wei S, Ji Y, Guo X, Yang F (2015) Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics 15(18):3175–3192. https://doi.org/10.1002/pmic.201500108

    Article  PubMed  CAS  Google Scholar 

  11. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660. https://doi.org/10.1038/nprot.2006.427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichole A. Reisdorph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reisdorph, N.A., Michel, C., Fritz, K., Reisdorph, R. (2018). Application of Proteomics in Lung Research. In: Alper, S., Janssen, W. (eds) Lung Innate Immunity and Inflammation. Methods in Molecular Biology, vol 1809. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8570-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8570-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8569-2

  • Online ISBN: 978-1-4939-8570-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics