Skip to main content

Modulation of Lung Epithelial Cell Function Using Conditional and Inducible Transgenic Approaches

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1809))

Abstract

In the lungs, the epithelium is a first line of innate defense. In acute settings, such as infection or particulate exposure, the epithelium is protective. Protection is conferred by the epithelium’s role as a physical barrier and by its ability to synthesize proteins that promote defense directly through physical interactions (e.g., mucins and anti-microbial peptides) and indirectly through the production of proteins that regulate inflammation (e.g., cytokines and chemokines). Despite its importance as a first line of host defense, the epithelium is also a significant target and an effector in lung pathologies. Accordingly, to determine the significance and biological mechanisms of genes involved in pulmonary defense, it is important to be able to interrogate the lung epithelium. In mice, this presents challenges related to the cellular location and timing of interventions. Effective genetic strategies for targeting the lung epithelium using tissue-/cell-specific and inducible control have been developed over the past decade. Methods for spatiotemporal targeting of gene expression are described here.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mason RJ (2006) Biology of alveolar type II cells. Respirology 11(Suppl):S12–S15. https://doi.org/10.1111/j.1440-1843.2006.00800.x

    Article  PubMed  Google Scholar 

  2. Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB Jr (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci U S A 95(25):14961–14966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proc Am Thorac Soc 1(1):47–53. https://doi.org/10.1513/pats.2306015

    Article  PubMed  CAS  Google Scholar 

  4. Basu S, Fenton MJ (2004) Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 286(5):L887–L892. https://doi.org/10.1152/ajplung.00323.2003

    Article  PubMed  CAS  Google Scholar 

  5. Evans SE, Xu Y, Tuvim MJ, Dickey BF (2010) Inducible innate resistance of lung epithelium to infection. Annu Rev Physiol 72:413–435. https://doi.org/10.1146/annurev-physiol-021909-135909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Georas SN, Rezaee F (2014) Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol 134(3):509–520. https://doi.org/10.1016/j.jaci.2014.05.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Janssen WJ, Stefanski AL, Bochner BS, Evans CM (2016) Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 48(4):1201–1214. https://doi.org/10.1183/13993003.00120-2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Williams OW, Sharafkhaneh A, Kim V, Dickey BF, Evans CM (2006) Airway mucus: from production to secretion. Am J Respir Cell Mol Biol 34(5):527–536. https://doi.org/10.1165/rcmb.2005-0436SF

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363(23):2233–2247. https://doi.org/10.1056/NEJMra0910061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23(24):5080–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewandoski M, Meyers EN, Martin GR (1997) Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb Symp Quant Biol 62:159–168

    Article  CAS  PubMed  Google Scholar 

  12. de Vries WN, Binns LT, Fancher KS, Dean J, Moore R, Kemler R, Knowles BB (2000) Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis 26(2):110–112

    Article  PubMed  Google Scholar 

  13. Lewandoski M, Wassarman KM, Martin GR (1997) Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 7(2):148–151

    Article  CAS  PubMed  Google Scholar 

  14. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1):113–126. https://doi.org/10.1016/j.stem.2007.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118(4):517–528. https://doi.org/10.1016/j.cell.2004.07.024

    Article  PubMed  CAS  Google Scholar 

  16. Que J, Luo X, Schwartz RJ, Hogan BL (2009) Multiple roles for Sox2 in the developing and adult mouse trachea. Development 136(11):1899–1907. https://doi.org/10.1242/dev.034629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ (2001) Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis 31(4):176–180

    Article  CAS  PubMed  Google Scholar 

  18. Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey RP (2002) Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int J Dev Biol 46(4):431–439

    PubMed  CAS  Google Scholar 

  19. Xu Q, Tam M, Anderson SA (2008) Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 506(1):16–29. https://doi.org/10.1002/cne.21529

    Article  PubMed  CAS  Google Scholar 

  20. Okubo T, Knoepfler PS, Eisenman RN, Hogan BL (2005) Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development 132(6):1363–1374. https://doi.org/10.1242/dev.01678

    Article  PubMed  CAS  Google Scholar 

  21. Mao CM, Yang X, Cheng X, Lu YX, Zhou J, Huang CF (2003) Establishment of keratinocyte-specific Cre recombinase transgenic mice. Yi Chuan Xue Bao 30(5):407–413

    PubMed  CAS  Google Scholar 

  22. Tarutani M, Itami S, Okabe M, Ikawa M, Tezuka T, Yoshikawa K, Kinoshita T, Takeda J (1997) Tissue-specific knockout of the mouse pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc Natl Acad Sci U S A 94(14):7400–7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berton TR, Matsumoto T, Page A, Conti CJ, Deng CX, Jorcano JL, Johnson DG (2003) Tumor formation in mice with conditional inactivation of Brca1 in epithelial tissues. Oncogene 22(35):5415–5426. https://doi.org/10.1038/sj.onc.1206825

    Article  PubMed  CAS  Google Scholar 

  24. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533–545

    Article  CAS  PubMed  Google Scholar 

  25. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127(22):4775–4785

    PubMed  CAS  Google Scholar 

  26. Li M, Chiba H, Warot X, Messaddeq N, Gerard C, Chambon P, Metzger D (2001) RXR-alpha ablation in skin keratinocytes results in alopecia and epidermal alterations. Development 128(5):675–688

    PubMed  CAS  Google Scholar 

  27. Li H, Cho SN, Evans CM, Dickey BF, Jeong JW, DeMayo FJ (2008) Cre-mediated recombination in mouse Clara cells. Genesis 46(6):300–307. https://doi.org/10.1002/dvg.20396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bertin G, Poujeol C, Rubera I, Poujeol P, Tauc M (2005) In vivo Cre/loxP mediated recombination in mouse Clara cells. Transgenic Res 14(5):645–654. https://doi.org/10.1007/s11248-005-7214-0

    Article  PubMed  CAS  Google Scholar 

  29. Simon DM, Arikan MC, Srisuma S, Bhattacharya S, Tsai LW, Ingenito EP, Gonzalez F, Shapiro SD, Mariani TJ (2006) Epithelial cell PPAR[gamma] contributes to normal lung maturation. FASEB J 20(9):1507–1509. https://doi.org/10.1096/fj.05-5410fje

    Article  PubMed  CAS  Google Scholar 

  30. Ji H, Houghton AM, Mariani TJ, Perera S, Kim CB, Padera R, Tonon G, McNamara K, Marconcini LA, Hezel A, El-Bardeesy N, Bronson RT, Sugarbaker D, Maser RS, Shapiro SD, Wong KK (2006) K-ras activation generates an inflammatory response in lung tumors. Oncogene 25(14):2105–2112. https://doi.org/10.1038/sj.onc.1209237

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka T, Rabbitts TH (2010) Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Oncogene 29(45):6064–6070. https://doi.org/10.1038/onc.2010.346

    Article  PubMed  CAS  Google Scholar 

  32. Oikonomou N, Mouratis MA, Tzouvelekis A, Kaffe E, Valavanis C, Vilaras G, Karameris A, Prestwich GD, Bouros D, Aidinis V (2012) Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 47(5):566–574. https://doi.org/10.1165/rcmb.2012-0004OC

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Huang G, Shornick LP, Roswit WT, Shipley JM, Brody SL, Holtzman MJ (2007) A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. Am J Respir Cell Mol Biol 36(5):515–519. https://doi.org/10.1165/rcmb.2006-0475RC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Flodby P, Borok Z, Banfalvi A, Zhou B, Gao D, Minoo P, Ann DK, Morrisey EE, Crandall ED (2010) Directed expression of Cre in alveolar epithelial type 1 cells. Am J Respir Cell Mol Biol 43(2):173–178. https://doi.org/10.1165/rcmb.2009-0226OC

    Article  PubMed  CAS  Google Scholar 

  35. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, Xu B, Lu MM, Zhou D, Sebzda E, Santore MT, Merianos DJ, Stadtfeld M, Flake AW, Graf T, Skoda R, Maltzman JS, Koretzky GA, Kahn ML (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670. https://doi.org/10.1182/blood-2010-02-270876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vitale-Cross L, Amornphimoltham P, Fisher G, Molinolo AA, Gutkind JS (2004) Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res 64(24):8804–8807. https://doi.org/10.1158/0008-5472.CAN-04-2623

    Article  PubMed  CAS  Google Scholar 

  37. Diamond I, Owolabi T, Marco M, Lam C, Glick A (2000) Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol 115(5):788–794. https://doi.org/10.1046/j.1523-1747.2000.00144.x

    Article  PubMed  CAS  Google Scholar 

  38. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27(22):4324–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kataoka K, Kim DJ, Carbajal S, Clifford JL, DiGiovanni J (2008) Stage-specific disruption of Stat3 demonstrates a direct requirement during both the initiation and promotion stages of mouse skin tumorigenesis. Carcinogenesis 29(6):1108–1114. https://doi.org/10.1093/carcin/bgn061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liang CC, You LR, Chang JL, Tsai TF, Chen CM (2009) Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs. J Biomed Sci 16:2. https://doi.org/10.1186/1423-0127-16-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775. https://doi.org/10.1073/pnas.0906850106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. https://doi.org/10.1038/nature10573

    Article  PubMed  CAS  Google Scholar 

  43. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 111(35):E3641–E3649. https://doi.org/10.1073/pnas.1409781111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Bailey SK, Frost AR, Louro ID, Townes TM, Paterson AJ, Kudlow JE, Lobo-Ruppert SM, Ruppert JM (2005) Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24(9):1491–1500. https://doi.org/10.1038/sj.onc.1208307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127(1):171–183. https://doi.org/10.1016/j.cell.2006.07.036

    Article  PubMed  CAS  Google Scholar 

  46. Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A 96(15):8551–8556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2):577–588. https://doi.org/10.1016/S0002-9440(10)63147-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 286(4):L643–L649. https://doi.org/10.1152/ajplung.00155.2003

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Indra AK, Warot X, Brocard J, Messaddeq N, Kato S, Metzger D, Chambon P (2000) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407(6804):633–636. https://doi.org/10.1038/35036595

    Article  PubMed  CAS  Google Scholar 

  50. Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima Y, Fishell G, Nelson SB, Huang ZJ (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71(6):995–1013. https://doi.org/10.1016/j.neuron.2011.07.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tichelaar JW, Lu W, Whitsett JA (2000) Conditional expression of fibroblast growth factor-7 in the developing and mature lung. J Biol Chem 275(16):11858–11864

    Article  CAS  PubMed  Google Scholar 

  52. Perl AK, Zhang L, Whitsett JA (2009) Conditional expression of genes in the respiratory epithelium in transgenic mice: cautionary notes and toward building a better mouse trap. Am J Respir Cell Mol Biol 40(1):1–3. https://doi.org/10.1165/rcmb.2008-0011ED

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Duerr J, Gruner M, Schubert SC, Haberkorn U, Bujard H, Mall MA (2011) Use of a new-generation reverse tetracycline transactivator system for quantitative control of conditional gene expression in the murine lung. Am J Respir Cell Mol Biol 44(2):244–254. https://doi.org/10.1165/rcmb.2009-0115OC

    Article  PubMed  CAS  Google Scholar 

  54. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL (2009) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4(6):525–534. https://doi.org/10.1016/j.stem.2009.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Blake JA, Eppig JT, Kadin JA, Richardson JE, Smith CL, Bult CJ, The Mouse Genome Database Group (2017) Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res 45(D1):D723–D729. https://doi.org/10.1093/nar/gkw1040

    Article  PubMed  CAS  Google Scholar 

  56. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL (2007) Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci U S A 104(2):410–417. https://doi.org/10.1073/pnas.0610770104

    Article  PubMed  CAS  Google Scholar 

  57. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182. https://doi.org/10.1371/journal.pbio.0060182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483. https://doi.org/10.1073/pnas.1117988108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin C, Song H, Huang C, Yao E, Gacayan R, Xu SM, Chuang PT (2012) Alveolar type II cells possess the capability of initiating lung tumor development. PLoS One 7(12):e53817. https://doi.org/10.1371/journal.pone.0053817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 121(7):2855–2862. https://doi.org/10.1172/JCI57673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fu Y, Xiao W (2006) Study of transcriptional regulation using a reporter gene assay. Methods Mol Biol 313:257–264. https://doi.org/10.1385/1-59259-958-3:257

    Article  PubMed  CAS  Google Scholar 

  62. Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617. https://doi.org/10.1016/S0076-6879(09)63034-2

    Article  PubMed  CAS  Google Scholar 

  63. Peach M, Marsh N, Miskiewicz EI, MacPhee DJ (2015) Solubilization of proteins: the importance of lysis buffer choice. Methods Mol Biol 1312:49–60. https://doi.org/10.1007/978-1-4939-2694-7_8

    Article  PubMed  CAS  Google Scholar 

  64. Peach M, Marsh N, Macphee DJ (2012) Protein solubilization: attend to the choice of lysis buffer. Methods Mol Biol 869:37–47. https://doi.org/10.1007/978-1-61779-821-4_4

    Article  PubMed  CAS  Google Scholar 

  65. Komatsu S (2007) Extraction of nuclear proteins. Methods Mol Biol 355:73–77. https://doi.org/10.1385/1-59745-227-0:73

    Article  PubMed  CAS  Google Scholar 

  66. Blancher C, Jones A (2001) SDS-PAGE and western blotting techniques. Methods Mol Med 57:145–162. https://doi.org/10.1385/1-59259-136-1:145

    Article  PubMed  CAS  Google Scholar 

  67. Piccotti L, Dickey BF, Evans CM (2012) Assessment of intracellular mucin content in vivo. Methods Mol Biol 842:279–295. https://doi.org/10.1007/978-1-61779-513-8_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Friedel RH, Wurst W, Wefers B, Kuhn R (2011) Generating conditional knockout mice. Methods Mol Biol 693:205–231. https://doi.org/10.1007/978-1-60761-974-1_12

    Article  PubMed  CAS  Google Scholar 

  69. Van Hoecke L, Job ER, Saelens X, Roose K (2017) Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. J Vis Exp (123). https://doi.org/10.3791/55398

  70. Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR, Perlman H (2013) Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 49(4):503–510. https://doi.org/10.1165/rcmb.2013-0086MA

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mauderly JL (1977) Bronchopulmonary lavage of small laboratory animals. Lab Anim Sci 27(2):255–261

    PubMed  CAS  Google Scholar 

  72. Medin NI, Osebold JW, Zee YC (1976) A procedure for pulmonary lavage in mice. Am J Vet Res 37(2):237–238

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stefanski, A.L., Raclawska, D.S., Evans, C.M. (2018). Modulation of Lung Epithelial Cell Function Using Conditional and Inducible Transgenic Approaches. In: Alper, S., Janssen, W. (eds) Lung Innate Immunity and Inflammation. Methods in Molecular Biology, vol 1809. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8570-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8570-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8569-2

  • Online ISBN: 978-1-4939-8570-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics