Skip to main content

Utilization of Feline ELISpot to Evaluate the Immunogenicity of a T Cell-Based FIV MAP Vaccine

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1808))

Abstract

The prototype and the commercial dual-subtype feline immunodeficiency virus (FIV) vaccines conferred protection against homologous FIV strains as well as heterologous FIV strains from the vaccine subtypes with closely related envelope (Env) sequences. Such protection was mediated by the FIV neutralizing antibodies (NAbs) induced by the vaccines. Remarkably, both prototype and commercial FIV vaccines also conferred protection against heterologous FIV subtypes with highly divergent Env sequences from the vaccine strains. Such protection was not mediated by the vaccine-induced NAbs but was mediated by a potent FIV-specific T-cell immunity generated by the vaccines (Aranyos et al., Vaccine 34: 1480–1488, 2016). The protective epitopes on the FIV vaccine antigen were identified using feline interleukin-2 (IL-2) and interferon-γ (IFNγ) ELISpot assays with overlapping FIV peptide stimulation of the peripheral blood mononuclear cells (PBMC) from cats immunized with prototype FIV vaccine. Two of the protective FIV peptide epitopes were identified on FIV p24 protein and another two protective peptide epitopes were found on FIV reverse transcriptase. In the current study, the multiple antigenic peptides (MAPs) of the four protective FIV peptides were combined with an adjuvant as the FIV MAP vaccine. The laboratory cats were immunized with the MAP vaccine to evaluate whether significant levels of vaccine-specific cytokine responses can be generated to the FIV MAPs and their peptides at post-second and post-third vaccinations. The PBMC from vaccinated cats and non-vaccinated control cats were tested for IL-2, IFNγ, and IL-10 ELISpot responses to the FIV MAPs and peptides. These results were compared to the results from CD4+ and CD8+ T-cell proliferation to the FIV MAPs and peptides. Current study demonstrates that IL-2 and IFNγ ELISpot responses can be used to detect memory responses of the T cells from vaccinated cats after the second and third vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  PubMed  CAS  Google Scholar 

  2. Sanou MP, Roff SR, Mennella A, Sleasman JW, Rathore MH, Yamamoto JK et al (2013) Evolutionarily conserved epitopes on human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus reverse transcriptases detected by HIV-1-infected subjects. J Virol 87:10004–10015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Roff SR, Sanou MP, Rathore MH, Levy JA, Yamamoto JK (2015) Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects. Hum Vaccin Immunother 11:1540–1556

    Article  PubMed  PubMed Central  Google Scholar 

  4. Uhl EW, Martin M, Coleman JK, Yamamoto JK (2008) Advances in FIV vaccine technology. Vet Immunol Immunopathol 123:65–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abbas AK, Lichtman AH, Pillai S (2015) Cellular and molecular immunology, 8th edn. Elsevier, Philadelphia, PA, pp 51–84. 199–229, 231-238, 493-501.

    Google Scholar 

  6. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  PubMed  CAS  Google Scholar 

  7. Smith KA (2001) IL-2. In: Oppenheim J, Feldmann M (eds) Cytokine reference, Volume 1: Ligands. Academic Press, San Diego, CA, pp 113–125

    Google Scholar 

  8. Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R et al (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305–310

    Article  PubMed  CAS  Google Scholar 

  9. Hagiwara E, Abbasi F, Mor G, Ishigatsubo Y, Klinman DM (1995) Phenotype and frequency of cells secreting IL-2, IL-4, IL-6, IL-10, IFN and TNF-alpha in human peripheral blood. Cytokine 7:815–822

    Article  PubMed  CAS  Google Scholar 

  10. Barrett L, Dai C, Gamberg J, Gallant M, Grant M (2007) Circulating CD14-CD36+ peripheral blood mononuclear cells constitutively produce interleukin-10. J Leukoc Biol 82:52–160. (Note that CD14-CD36+ PBMC is considered to be macrophages and monocytes [5].).

    Article  CAS  Google Scholar 

  11. Rutz S, Ouyang W (2016) Regulation of interleukin-10 expression. Adv Exp Med Biol 941:89–116

    Article  PubMed  CAS  Google Scholar 

  12. Sabat R, Grütz G, Warszawska K, Kirsch S, Witte E, Wolk K et al (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21:331–344

    Article  PubMed  CAS  Google Scholar 

  13. Hunter RL (2002) Overview of vaccine adjuvants: present and future. Vaccine 20(Suppl. 3):S7–S12

    Article  PubMed  CAS  Google Scholar 

  14. Gołoś A, Lutyńska A (2015) Aluminium-adjuvanted vaccines--a review of the current state of knowledge. Przegl Epidemiol 69:731–734. 871-874.

    PubMed  Google Scholar 

  15. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D et al (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Abbott JR, Pu R, Coleman JK, Yamamoto JK (2012) Utilization of feline ELISPOT for mapping vaccine epitopes. Methods Mol Biol 792:47–63

    Article  PubMed  CAS  Google Scholar 

  17. Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D et al (2003) Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77:2081–2092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Novitsky V, Rybak N, McLane MF, Gilbert P, Chigwedere P, Klein I et al (2001) Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol 75:9210–9228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lieberman J (2004) Tracking the killers: how should we measure CD8 T cells in HIV infection? AIDS 18:1489–1493

    Article  PubMed  Google Scholar 

  20. Streeck H, Frahm N, Walker BD (2009) The role of IFN-gamma Elispot assay in HIV vaccine research. Nat Protoc 4:461–469

    Article  PubMed  CAS  Google Scholar 

  21. Kuerten S, Nowacki TM, Kleen TO, Asaad RJ, Lehmann PV, Tary-Lehmann M (2008) Dissociated production of perforin, granzyme B, and IFN-gamma by HIV-specific CD8(+) cells in HIV infection. AIDS Res Hum Retroviruses 24:62–71

    Article  PubMed  CAS  Google Scholar 

  22. Soghoian DZ, Jessen H, Flanders M, Sierra-Davidson K, Cutler S, Pertel T et al (2012) HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci Transl Med 4:123ra25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Souza MS, Ratto-Kim S, Chuenarom W, Schuetz A, Chantakulkij S, Nuntapinit B et al (2012) The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J Immunol 188:5166–5176

    Article  PubMed  CAS  Google Scholar 

  24. Makedonas G, Betts MR (2006) Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol 28:209–219

    Article  PubMed  Google Scholar 

  25. Aranyos AM, Roff SR, Pu R, Owen JL, Coleman JK, Yamamoto JK (2016) An initial examination of the potential role of T-cell immunity in protection against feline immunodeficiency virus (FIV) infection. Vaccine 34:1480–1488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. O’Connell KA, Bailey JR, Blankson JN (2009) Elucidating the elite: mechanisms of control in HIV-1 infection. Trends Pharmacol Sci 30:631–637

    Article  PubMed  CAS  Google Scholar 

  27. Owen RE, Heitman JW, Hirschkorn DF, Lanteri MC, Biswas HH, Martin JN et al (2010) HIV+ elite controllers have low HIV-specific T-cell activation yet maintain strong, polyfunctional T-cell responses. AIDS 24:1095–1105

    Article  PubMed  CAS  Google Scholar 

  28. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I et al (2013) Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340:1237874

    Article  PubMed  CAS  Google Scholar 

  29. Uhl EW, Heaton-Jones TG, Pu R, Yamamoto JK (2002) FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol 90:113–132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Omori M, Pu R, Tanabe T, Hou W, Coleman JK, Arai M et al (2004) Cellular immune responses to feline immunodeficiency virus (FIV) induced by dual-subtype FIV vaccine. Vaccine 23:386–398

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J, Yang JM, Wang HJ, Ru GQ, Fan DM (2013) Synthesized multiple antigenic polypeptide vaccine based on B-cell epitopes of human heparanase could elicit a potent antimetastatic effect on human hepatocellular carcinoma in vivo. PLoS One 8:e52940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhao G, Sun S, Du L, Xiao W, Ru Z, Kou Z et al (2010) An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus. Virol J 7:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Amexis G, Young NS (2007) Multiple antigenic peptides as vaccine platform for the induction of humoral responses against dengue-2 virus. Viral Immunol 20:657–663

    Article  PubMed  CAS  Google Scholar 

  34. Mägerlein M, Hock D, Adermann K, Neidlein R, Forssmann WG, Strein K (1998) Production of sequence specific polyclonal antibodies to human parathyroid hormone 1-37 by immunization with multiple antigenic peptides. Arzneimittelforschung 48:783–787

    PubMed  Google Scholar 

  35. Cruz LJ, Quintana D, Iglesias E, Garcia Y, Huerta V, Garay HE et al (2000) Immunogenicity comparison of a multi-antigenic peptide bearing V3 sequences of the human immunodeficiency virus type 1 with TAB9 protein in mice. J Pept Sci 6:217–224

    Article  PubMed  CAS  Google Scholar 

  36. Moldovan I, Targoni O, Zhang W, Sundararaman S, Lehmann PV (2016) How frequently are predicted peptides actually recognized by CD8 cells? Cancer Immunol Immunother 65:847–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wessely-Szponder J, Szponder T, Bobowiec R (2017) Different activation of monocyte-derived macrophages by antimicrobial peptides at a titanium tibial implantation in rabbits. Res Vet Sci 115:201–210

    Article  PubMed  CAS  Google Scholar 

  38. Pantic JM, Mechkarska M, Lukic ML, Conlon JM (2014) Effects of tigerinin peptides on cytokine production by mouse peritoneal macrophages and spleen cells and by human peripheral blood mononuclear cells. Biochimie 101:83–92

    Article  PubMed  CAS  Google Scholar 

  39. Bangert M, Wright AK, Rylance J, Kelly MJ, Wright AD, Carlone GM et al (2013) Immunoactivating peptide p4 augments alveolar macrophage phagocytosis in two diverse human populations. Antimicrob Agents Chemother 57:4566–4569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by JKY Miscellaneous Donors Fund. We thank Dr. Ruiyu Pu for his technical assistance. J.K.Y. is the inventor of record on a patent held by the University of Florida and may be entitled to royalties from companies developing commercial products related to the research described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet K. Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahay, B., Aranyos, A.M., McAvoy, A., Yamamoto, J.K. (2018). Utilization of Feline ELISpot to Evaluate the Immunogenicity of a T Cell-Based FIV MAP Vaccine. In: Kalyuzhny, A. (eds) Handbook of ELISPOT . Methods in Molecular Biology, vol 1808. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8567-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8567-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8566-1

  • Online ISBN: 978-1-4939-8567-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics