Skip to main content

Development of a Rodent Model of Closed Head Injury: The Maryland Model

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 139))

Abstract

Brain injury due to closed frontal head impact is a common mechanism in civilian traumatic brain injury (TBI). Researchers have developed a variety of models of traumatic brain injury in rodents, using both open and closed methods of injury. However, these models fail to reproduce the frontal impact of force commonly found in human TBI, result in significant focal injury such as skull fractures or focal contusions, and, in certain cases, carry an unacceptably high mortality. The Maryland TBI model provides an alternative rodent model to address these shortcomings. Here, we describe the rationale for the development of the Maryland TBI model. We then provide a detailed procedural overview of the model. We then summarize relevant pathological findings in the model. Finally, we compare the model to other existing closed head injury models in rodents, both with regard to advantages and limitations of the model.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Coronado VG, Xu L, Basavaraju SV, LC MG, Wald MM, Faul MD, Guzman BR, Hemphill JD, Centers for Disease C, Prevention (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997-2007. MMWR Surveill Summ 60(5):1–32

    PubMed  Google Scholar 

  2. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14(6):602–615

    Article  CAS  PubMed  Google Scholar 

  3. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378

    Article  PubMed  Google Scholar 

  4. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R, Investigators DT, Australian, New Zealand Intensive Care Society Clinical Trials G (2011) Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364(16):1493–1502. https://doi.org/10.1056/NEJMoa1102077

    Article  PubMed  CAS  Google Scholar 

  5. Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, Anderson I, Bulters DO, Belli A, Eynon CA, Wadley J, Mendelow AD, Mitchell PM, Wilson MH, Critchley G, Sahuquillo J, Unterberg A, Servadei F, Teasdale GM, Pickard JD, Menon DK, Murray GD, Kirkpatrick PJ, Collaborators RET (2016) Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med 375(12):1119–1130. https://doi.org/10.1056/NEJMoa1605215

    Article  PubMed  Google Scholar 

  6. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T, Global Neurotrauma Research G (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367(26):2471–2481. https://doi.org/10.1056/NEJMoa1207363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, Murray GD, Eurotherm Trial C (2015) Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 373(25):2403–2412. https://doi.org/10.1056/NEJMoa1507581

    Article  PubMed  CAS  Google Scholar 

  8. Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM, Manley GT, Merck LH, Janis LS, Barsan WG, Investigators N (2014) Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 371(26):2457–2466. https://doi.org/10.1056/NEJMoa1404304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5(2):91–104. https://doi.org/10.1089/neu.1988.5.91

    Article  PubMed  CAS  Google Scholar 

  10. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39(3):253–262

    Article  CAS  PubMed  Google Scholar 

  11. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15(1):49–59

    Article  CAS  PubMed  Google Scholar 

  12. Adams JH, Graham DI, Murray LS, Scott G (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12(6):557–563. https://doi.org/10.1002/ana.410120610

    Article  PubMed  CAS  Google Scholar 

  13. Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21(6):1923–1930

    Article  CAS  PubMed  Google Scholar 

  14. Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24(5):1401–1410. https://doi.org/10.1096/fj.09-142844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, Wang KK, Povlishock JT (2009) Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. J Neuropathol Exp Neurol 68(3):241–249. https://doi.org/10.1097/NEN.0b013e3181996bfe

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gennarelli TA, Adams JH, Graham DI (1981) Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. Acta Neuropathol Suppl 7:23–25

    Article  CAS  PubMed  Google Scholar 

  17. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80(2):291–300. https://doi.org/10.3171/jns.1994.80.2.0291

    Article  PubMed  CAS  Google Scholar 

  18. Prange MT, Meaney DF, Margulies SS (2000) Defining brain mechanical properties: effects of region, direction, and species. Stapp Car Crash J 44:205–213

    PubMed  CAS  Google Scholar 

  19. Wang HC, Duan ZX, Wu FF, Xie L, Zhang H, Ma YB (2010) A new rat model for diffuse axonal injury using a combination of linear acceleration and angular acceleration. J Neurotrauma 27(4):707–719. https://doi.org/10.1089/neu.2009.1071

    Article  PubMed  Google Scholar 

  20. Li XY, Li J, Feng DF, Gu L (2010) Diffuse axonal injury induced by simultaneous moderate linear and angular head accelerations in rats. Neuroscience 169(1):357–369. https://doi.org/10.1016/j.neuroscience.2010.04.075

    Article  PubMed  CAS  Google Scholar 

  21. Ellingson BM, Fijalkowski RJ, Pintar FA, Yoganandan N, Gennarelli TA (2005) New mechanism for inducing closed head injury in the rat. Biomed Sci Instrum 41:86–91

    PubMed  Google Scholar 

  22. Xiao-Sheng H, Sheng-Yu Y, Xiang Z, Zhou F, Jian-ning Z (2000) Diffuse axonal injury due to lateral head rotation in a rat model. J Neurosurg 93(4):626–633. https://doi.org/10.3171/jns.2000.93.4.0626

    Article  PubMed  CAS  Google Scholar 

  23. Fijalkowski RJ, Stemper BD, Pintar FA, Yoganandan N, Crowe MJ, Gennarelli TA (2007) New rat model for diffuse brain injury using coronal plane angular acceleration. J Neurotrauma 24(8):1387–1398. https://doi.org/10.1089/neu.2007.0268

    Article  PubMed  Google Scholar 

  24. De Mulder G, Van Rossem K, Van Reempts J, Borgers M, Verlooy J (2000) Validation of a closed head injury model for use in long-term studies. Acta Neurochir Suppl 76:409–413

    PubMed  Google Scholar 

  25. Kilbourne M, Kuehn R, Tosun C, Caridi J, Keledjian K, Bochicchio G, Scalea T, Gerzanich V, Simard JM (2009) Novel model of frontal impact closed head injury in the rat. J Neurotrauma 26(12):2233–2243. https://doi.org/10.1089/neu.2009.0968

    Article  PubMed  PubMed Central  Google Scholar 

  26. Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009) Expression of amyloid precursor protein after rat traumatic brain injury. Neurol Res 31(1):103–109. https://doi.org/10.1179/016164108X323771

    Article  PubMed  CAS  Google Scholar 

  27. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1995) Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12(4):565–572. https://doi.org/10.1089/neu.1995.12.565

    Article  PubMed  CAS  Google Scholar 

  28. Stone JR, Singleton RH, Povlishock JT (2000) Antibodies to the C-terminus of the beta-amyloid precursor protein (APP): a site specific marker for the detection of traumatic axonal injury. Brain Res 871(2):288–302

    Article  CAS  PubMed  Google Scholar 

  29. Herrera JJ, Bockhorst K, Kondraganti S, Stertz L, Quevedo J, Narayana PA (2017) Acute white matter tract damage after frontal mild traumatic brain injury. J Neurotrauma 34(2):291–299. https://doi.org/10.1089/neu.2016.4407

    Article  PubMed  PubMed Central  Google Scholar 

  30. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 80(2):301–313. https://doi.org/10.3171/jns.1994.80.2.0301

    Article  PubMed  CAS  Google Scholar 

  31. Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17(1):29–43. https://doi.org/10.1016/j.nbd.2004.05.011

    Article  PubMed  CAS  Google Scholar 

  32. Namjoshi DR, Cheng WH, McInnes KA, Martens KM, Carr M, Wilkinson A, Fan J, Robert J, Hayat A, Cripton PA, Wellington CL (2014) Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury. Mol Neurodegener 9:55. https://doi.org/10.1186/1750-1326-9-55

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12(6):564–574. https://doi.org/10.1002/ana.410120611

    Article  PubMed  CAS  Google Scholar 

  34. Davidsson J, Risling M (2011) A new model to produce sagittal plane rotational induced diffuse axonal injuries. Front Neurol 2:41. https://doi.org/10.3389/fneur.2011.00041

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sabbagh JJ, Fontaine SN, Shelton LB, Blair LJ, Hunt JB Jr, Zhang B, Gutmann JM, Lee DC, Lloyd JD, Dickey CA (2016) Noncontact rotational head injury produces transient cognitive deficits but lasting neuropathological changes. J Neurotrauma 33(19):1751–1760. https://doi.org/10.1089/neu.2015.4288

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marc Simard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hayman, E., Kaledjian, K., Gerzanich, V., Simard, J.M. (2018). Development of a Rodent Model of Closed Head Injury: The Maryland Model. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics