Skip to main content

The Rapid Templating Process for Large Cranial Defects

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

  • 624 Accesses

Abstract

Cranioplasty, the reconstructive method utilized in the treatment of cranial defects, has evolved based on emerging technology, both in relation to process and material capabilities. Advances in manufacturing technology have led to the emergence of the rapid templating process, defined as “the creation of patient specific templates, through rapid prototyping methods, which allow the creation of implants intraoperatively and minimise the lead time associated with custom implant manufacture.” This process, a fusion of traditional casting methods, emerging rapid prototyping technology, and patient-specific design, presents an effective and clinically viable system of cranial defect treatment. Here, we describe the history, methods, and capabilities of the rapid templating system, to provide the reader with an understanding of the form and function of the system and to highlight advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajendra PB et al (2009) Characteristics of associated craniofacial trauma in patients with head injuries: an experience with 100 cases. J Emerg Trauma Shock 2(2):89

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boffano P et al (2015) European Maxillofacial Trauma (EURMAT) project: a multicentre and prospective study. J Cranio-Maxillofac Surg 43(1):62–70

    Article  Google Scholar 

  3. Ferreira PC et al (2015) Associated injuries in pediatric patients with facial fractures in Portugal: analysis of 1416 patients. J Cranio-Maxillofac Surg 43(4):437–443

    Article  Google Scholar 

  4. Kraft A et al (2012) Craniomaxillofacial trauma: synopsis of 14,654 cases with 35,129 injuries in 15 years. Craniomaxillofac Trauma Reconstruct 5(1):41–50

    Article  Google Scholar 

  5. Dujovny M et al (1997) Cranioplasty: cosmetic or therapeutic? Surg Neurol 47(3):238–241

    Article  PubMed  CAS  Google Scholar 

  6. Marbacher S et al (2012) Intraoperative template-molded bone flap reconstruction for patient-specific cranioplasty. Neurosurg Rev 35(4):527–535

    Article  PubMed  Google Scholar 

  7. Annan M et al (2015) Sinking skin flap syndrome (or syndrome of the trephined): a review. Br J Neurosurg 29(3):314–318

    Article  PubMed  Google Scholar 

  8. Ashayeri K et al (2016) Syndrome of the trephined: a systematic review. Neurosurgery 79(4):525–534

    Article  PubMed  Google Scholar 

  9. Abdou A et al (2015) Motor and neurocognitive recovery in the syndrome of the trephined: a case report. Ann Phys Rehabil Med 58(3):183

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hagan M, Bradley JP (2017) Syndrome of the trephined: functional improvement after reconstruction of large cranial vault defects. J Craniofac Surg 28(5):1129–1130

    Article  PubMed  Google Scholar 

  11. Tadros M, Costantino PD (2008) Advances in cranioplasty: a simplified algorithm to guide cranial reconstruction of acquired defects. Facial Plast Surg 24(01):135–145

    Article  PubMed  CAS  Google Scholar 

  12. Passalacqua NV, Rainwater CW (2015) Skeletal trauma analysis: case studies in context. Wiley, New York

    Book  Google Scholar 

  13. Shah AM, Jung H, Skirboll S (2014) Materials used in cranioplasty: a history and analysis. Neurosurg Focus 36(4):E19

    Article  PubMed  Google Scholar 

  14. Harris DA et al (2014) History of synthetic materials in alloplastic cranioplasty. Neurosurg Focus 36(4):E20

    Article  PubMed  Google Scholar 

  15. Abhay S, Haines SJ (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3):588–603

    Google Scholar 

  16. Chibbaro S et al (2011) Decompressive craniectomy and early cranioplasty for the management of severe head injury: a prospective multicenter study on 147 patients. World Neurosurg 75(3):558–562

    Article  PubMed  Google Scholar 

  17. Liang W et al (2007) Cranioplasty of large cranial defect at an early stage after decompressive craniectomy performed for severe head trauma. J Craniofac Surg 18(3):526–532

    Article  PubMed  Google Scholar 

  18. Bender A et al (2013) Early cranioplasty may improve outcome in neurological patients with decompressive craniectomy. Brain Inj 27(9):1073–1079

    Article  PubMed  Google Scholar 

  19. Song J et al (2014) Beneficial impact of early cranioplasty in patients with decompressive craniectomy: evidence from transcranial Doppler ultrasonography. Acta Neurochir 156(1):193–198

    Article  PubMed  Google Scholar 

  20. Cabraja M, Klein M, Lehmann T-N (2009) Long-term results following titanium cranioplasty of large skull defects. Neurosurg Focus 26(6):E10

    Article  PubMed  Google Scholar 

  21. Morina A et al (2011) Cranioplasty with subcutaneously preserved autologous bone grafts in abdominal wall—experience with 75 cases in a post-war country Kosova. Surg Neurol Int 2:72

    Article  PubMed  PubMed Central  Google Scholar 

  22. Klinger DR et al (2014) Autologous and acrylic cranioplasty: a review of 10 years and 258 cases. World Neurosurg 82(3):e525–e530

    Article  PubMed  Google Scholar 

  23. Inamasu J, Kuramae T, Nakatsukasa M (2010) Does difference in the storage method of bone flaps after decompressive craniectomy affect the incidence of surgical site infection after cranioplasty? Comparison between subcutaneous pocket and cryopreservation. J Trauma Acute Care Surg 68(1):183–187

    Article  Google Scholar 

  24. Frazer RQ et al (2005) PMMA: an essential material in medicine and dentistry. J Long-Term Eff Med Implants 15(6):629–639

    Article  PubMed  CAS  Google Scholar 

  25. Kriegel RJ, Schaller C, Clusmann H (2007) Cranioplasty for large skull defects with PMMA (polymethylmethacrylate) or Tutoplast processed autogenic bone grafts. Zentralb Neurochir 68(4):182–189

    Article  CAS  Google Scholar 

  26. Huang GJ et al (2015) Craniofacial reconstruction with poly (methyl methacrylate) customized cranial implants. J Craniofac Surg 26(1):64–70

    Article  PubMed  Google Scholar 

  27. Jaberi J et al (2013) Long-term clinical outcome analysis of poly-methyl-methacrylate cranioplasty for large skull defects. J Oral Maxillofac Surg 71(2):e81–e88

    Article  PubMed  Google Scholar 

  28. Marchac D, Greensmith A (2008) Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. J Plast Reconstr Aesthet Surg 61(7):744–752

    Article  PubMed  CAS  Google Scholar 

  29. Worm PV et al (2016) Polymethylmethacrylate imbedded with antibiotics cranioplasty: an infection solution for moderate and large defects reconstruction? Surg Neurol Int 7(Suppl 28):S746

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hsu VM et al (2014) A preliminary report on the use of antibiotic-impregnated methyl methacrylate in salvage cranioplasty. J Craniofac Surg 25(2):393–396

    Article  PubMed  Google Scholar 

  31. Murray WR (1984) Use of antibiotic-containing bone cement. Clin Orthop Relat Res 190:89–95

    CAS  Google Scholar 

  32. Webb J, Spencer R (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. Bone Joint J 89(7):851–857

    CAS  Google Scholar 

  33. Golz T et al (2010) Temperature elevation during simulated polymethylmethacrylate (PMMA) cranioplasty in a cadaver model. J Clin Neurosci 17(5):617–622

    Article  PubMed  CAS  Google Scholar 

  34. Togawa D et al (2003) Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate. Spine 28(14):1521–1527

    PubMed  Google Scholar 

  35. Pikis S, Goldstein J, Spektor S (2015) Potential neurotoxic effects of polymethylmethacrylate during cranioplasty. J Clin Neurosci 22(1):139–143

    Article  PubMed  CAS  Google Scholar 

  36. Matsuno A et al (2006) Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta Neurochir 148(5):535–540

    Article  PubMed  CAS  Google Scholar 

  37. Lee S-C et al (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16(1):56–63

    Article  CAS  PubMed  Google Scholar 

  38. Rotaru H et al (2012) Cranioplasty with custom-made implants: analyzing the cases of 10 patients. J Oral Maxillofac Surg 70(2):e169–e176

    Article  PubMed  Google Scholar 

  39. Iaccarino C et al (2015) Preliminary results of a prospective study on methods of cranial reconstruction. J Oral Maxillofac Surg 73(12):2375–2378

    Article  PubMed  Google Scholar 

  40. Turgut G, Özkaya Ö, Kayal MU (2012) Computer-aided design and manufacture and rapid prototyped polymethylmethacrylate reconstruction. J Craniofac Surg 23(3):770–773

    Article  PubMed  Google Scholar 

  41. Lee C-H et al (2012) Analysis of the factors influencing bone graft infection after cranioplasty. J Trauma Acute Care Surg 73(1):255–260

    Article  PubMed  Google Scholar 

  42. Bobinski L, Koskinen L-OD, Lindvall P (2013) Complications following cranioplasty using autologous bone or polymethylmethacrylate—retrospective experience from a single center. Clin Neurol Neurosurg 115(9):1788–1791

    Article  PubMed  Google Scholar 

  43. Al-Tamimi YZ et al (2012) Comparison of acrylic and titanium cranioplasty. Br J Neurosurg 26(4):510–513

    Article  PubMed  Google Scholar 

  44. Piitulainen JM et al (2015) Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg 83(5):708–714

    Article  PubMed  Google Scholar 

  45. Stieglitz LH et al (2014) Intraoperative fabrication of patient-specific moulded implants for skull reconstruction: single-Centre experience of 28 cases. Acta Neurochir 156(4):793–803

    Article  PubMed  Google Scholar 

  46. Kim B-J et al (2012) Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Kor Neurosurg Soc 52(6):541–546

    Article  Google Scholar 

  47. Goh RC et al (2010) Customised fabricated implants after previous failed cranioplasty. J Plast Reconstr Aesthet Surg 63(9):1479–1484

    Article  PubMed  Google Scholar 

  48. Hay JA, Smayra T, Moussa R (2017) Customized polymethylmethacrylate cranioplasty implants using 3-dimensional printed polylactic acid molds: technical note with 2 illustrative cases. World Neurosurg 105:971–979.e1

    Article  PubMed  Google Scholar 

  49. Thien A et al (2015) Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurg 83(2):176–180

    Article  PubMed  Google Scholar 

  50. Wiggins A et al (2013) Cranioplasty with custom-made titanium plates—14 years experience. Neurosurgery 72(2):248–256

    Article  PubMed  Google Scholar 

  51. Le Guéhennec L et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854

    Article  PubMed  CAS  Google Scholar 

  52. Williams L, Fan K, Bentley R (2015) Custom-made titanium cranioplasty: early and late complications of 151 cranioplasties and review of the literature. Int J Oral Maxillofac Surg 44(5):599–608

    Article  PubMed  CAS  Google Scholar 

  53. Imanishi J, Choong PF (2015) Three-dimensional printed calcaneal prosthesis following total calcanectomy. Int J Surg Case Rep 10:83–87

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aranda JL et al (2015) Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardio-Thorac Surg 48:e92–e94

    Article  Google Scholar 

  55. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ng ZY, Nawaz I (2014) Computer-designed PEEK implants: a peek into the future of cranioplasty? J Craniofac Surg 25(1):e55–e58

    Article  PubMed  Google Scholar 

  57. O’Reilly EB et al (2015) Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty. J Plast Reconstr Aesthet Surg 68(3):329–338

    Article  PubMed  Google Scholar 

  58. Gooch MR et al (2009) Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 26(6):E9

    Article  PubMed  Google Scholar 

  59. Cheng Y-K et al (2008) Factors affecting graft infection after cranioplasty. J Clin Neurosci 15(10):1115–1119

    Article  PubMed  Google Scholar 

  60. Reddy S et al (2014) Clinical outcomes in cranioplasty: risk factors and choice of reconstructive material. Plast Reconstr Surg 133(4):864–873

    Article  PubMed  CAS  Google Scholar 

  61. Mundinger GS et al (2016) Management of the repeatedly failed cranioplasty following large postdecompressive craniectomy: establishing the efficacy of staged free Latissimus Dorsi transfer/tissue expansion/custom polyetheretherketone implant reconstruction. J Craniofac Surg 27(8):1971–1977

    Article  PubMed  Google Scholar 

  62. Im S-H et al (2012) Long-term incidence and predicting factors of cranioplasty infection after decompressive craniectomy. J Kor Neurosurg Soc 52(4):396–403

    Article  Google Scholar 

  63. Kwarcinski J et al (2017) Cranioplasty and craniofacial reconstruction: a review of implant material, manufacturing method and infection risk. Appl Sci 7(3):276

    Article  CAS  Google Scholar 

  64. Lantada AD, Morgado PL (2012) Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu Rev Biomed Eng 14:73–96

    Article  PubMed  CAS  Google Scholar 

  65. Tuomi J et al (2014) A novel classification and online platform for planning and documentation of medical applications of additive manufacturing. Surg Innov 21(6):553–559

    Article  PubMed  Google Scholar 

  66. Xu J et al (2015) Application of rapid prototyping pelvic model for patients with DDH to facilitate arthroplasty planning: a pilot study. J Arthroplast 30(11):1963–1970

    Article  Google Scholar 

  67. Bagaria V et al (2011) Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol 80(3):814–820

    Article  PubMed  Google Scholar 

  68. Esses SJ et al (2011) Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping. Am J Roentgenol 196(6):W683–W688

    Article  Google Scholar 

  69. Sherekar RM, Pawar AN (2014) Application of biomodels for surgical planning by using rapid prototyping: a review & case studies. Int J Innov Res Adv Eng 1(6):263–271

    Google Scholar 

  70. Waran V et al (2014) Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons: technical note. J Neurosurg 120(2):489–492

    Article  PubMed  Google Scholar 

  71. Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, New York

    Google Scholar 

  72. Grynol B (2014) Disruptive manufacturing: the effects of 3D printing. Deloitte, Canada

    Google Scholar 

  73. Huang SH et al (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203

    Article  Google Scholar 

  74. Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704

    Google Scholar 

  75. Kietzmann J, Pitt L, Berthon P (2015) Disruptions, decisions, and destinations: enter the age of 3-D printing and additive manufacturing. Bus Horiz 58(2):209–215

    Article  Google Scholar 

  76. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243

    Article  Google Scholar 

  77. Thompson R (2007) Manufacturing processes for design professionals. Thames & Hudson, London

    Google Scholar 

  78. Gibson I, Rosen D, Stucker B (2015) Direct digital manufacturing. In: Additive manufacturing technologies. Springer, New York, pp 375–397

    Chapter  Google Scholar 

  79. Chen D et al (2015) Direct digital manufacturing: definition, evolution, and sustainability implications. J Clean Prod 107:615–625

    Article  Google Scholar 

  80. Gibson I, Rosen D, Stucker B (2014) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, New York

    Google Scholar 

  81. Dudek P (2013) FDM 3D printing technology in manufacturing composite elements. Arch Metall Mater 58(4):1415–1418

    Article  CAS  Google Scholar 

  82. Novakova-Marcincinova, L., et al. Special materials used in FDM rapid prototyping technology application. In: Intelligent Engineering Systems (INES), 2012 I.E. 16th International Conference on. 2012. IEEE

    Google Scholar 

  83. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200

    Article  Google Scholar 

  84. Wong JY, Pfahnl AC (2014) 3D printing of surgical instruments for long-duration space missions. Aviat Space Environ Med 85(7):758–763

    Article  PubMed  Google Scholar 

  85. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  PubMed  CAS  Google Scholar 

  86. Tarafder S et al (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641

    Article  PubMed  CAS  Google Scholar 

  87. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124

    Article  PubMed  CAS  Google Scholar 

  88. El-Hajje A et al (2014) Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. J Mater Sci Mater Med 25(11):2471–2480

    Article  PubMed  CAS  Google Scholar 

  89. Pinkerton AJ (2016) Lasers in additive manufacturing. Opt Laser Technol 78:25–32

    Article  Google Scholar 

  90. Kalpakjian S, Schmid SR, Kok C-W (2008) Manufacturing processes for engineering materials. Pearson-Prentice Hall, Upper Saddle River

    Google Scholar 

  91. de Treville S et al (2014) Valuing lead time. J Oper Manag 32(6):337–346

    Article  Google Scholar 

  92. Huang SH et al (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203

    Article  Google Scholar 

  93. Horn TJ, Harrysson OL (2012) Overview of current additive manufacturing technologies and selected applications. Sci Prog 95(3):255–282

    Article  PubMed  CAS  Google Scholar 

  94. Chua CK, Leong KF, Liu ZH (2015) Rapid tooling in manufacturing. In: Nee AYC (ed) Handbook of manufacturing engineering and technology. Springer, New York, pp 2525–2549

    Google Scholar 

  95. Pham D, Dimov SS (2012) Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer Science & Business Media, New York

    Google Scholar 

  96. Hieu L et al (2002) Design and manufacturing of cranioplasty implants by 3-axis cnc milling. Technol Health Care 10(5):413–423

    PubMed  CAS  Google Scholar 

  97. Delbeke D et al (2006) Procedure guideline for SPECT/CT imaging 1.0. J Nucl Med 47(7):1227–1234

    PubMed  Google Scholar 

  98. Brix G et al (2011) Dynamic contrast-enhanced CT studies: balancing patient exposure and image noise. Investig Radiol 46(1):64–70

    Article  Google Scholar 

  99. Miglioretti DL et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167(8):700–707

    Article  PubMed  PubMed Central  Google Scholar 

  100. McMenamin PG et al (2014) The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ 7(6):479–486

    Article  PubMed  Google Scholar 

  101. An G et al (2017) Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations. Ann Anat 210:76–83

    Article  PubMed  Google Scholar 

  102. Pitas I (2000) Digital image processing algorithms and applications. Wiley, New York

    Google Scholar 

  103. Sahoo PK, Soltani S, Wong AK (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260

    Article  Google Scholar 

  104. Patanè G, Giannini F, Attene M (2017) Computational methods for the morphological analysis and annotation of segmented 3D medical data. IMATI Report Series. nr. 17-08

    Google Scholar 

  105. Atherton PR, Caporael LR (1985) A subjective judgment study of polygon based curved surface imagery. In ACM SIGCHI Bulletin. ACM, New York

    Google Scholar 

  106. Klein GT, Lu Y, Wang MY (2013) 3D printing and neurosurgery—ready for prime time? World Neurosurg 80(3):233–235

    Article  PubMed  Google Scholar 

  107. Khader BA, Towler MR (2016) Materials and techniques used in cranioplasty fixation: a review. Mater Sci Eng C 66:315–322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Boughton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwarcinski, J., Boughton, P., Ruys, A., van Gelder, J. (2018). The Rapid Templating Process for Large Cranial Defects. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics