Skip to main content

Three-Dimensional In Vitro Brain Tissue Models

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

Abstract

In vitro cell and tissue cultures are indispensable tools for brain research, including traumatic brain injury (TBI). Bioengineered three-dimensional (3D) tissue models are increasingly used as disease systems to understand complex cell–cell interactions and tissue functions. Here, we describe a bioengineered 3D in vitro brain tissue model that presents cortical tissue-like cell compartmentalization and mechanical property, long-term tissue growth and neurophysiological functions. The 3D model’s brain-mimetic properties enabled recapitulation of dynamic tissue responses to TBI, as demonstrated with an experimental weight-drop injury setup. Here, we provide an overview of the design principles of the 3D brain tissue model and detailed instructions on constructing the model from raw materials (silkworm cocoons, hydrogel, cells), and on conducting mechanical testing and injury experiments. We describe downstream analytic assays for evaluation of the 3D tissue model and expected outcomes. Materials and methods described in this protocol can be adapted to other 3D culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heffernan JM, Overstreet DJ, Le LD, Vernon BL, Sirianni RW (2015) Bioengineered scaffolds for 3D analysis of glioblastoma proliferation and invasion. Ann Biomed Eng 43:1965–1977

    Article  PubMed  Google Scholar 

  2. Ivanov DP, Parker TL, Walker DA, Alexander C, Ashford MB, Gellert PR, Garnett MC (2015) In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol 205:3–13

    Article  CAS  PubMed  Google Scholar 

  3. Fan Y, Nguyen DT, Akay Y, Xu F, Akay M (2016) Engineering a brain cancer chip for high-throughput drug screening. Sci Rep 6:25062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  5. Chamberlain SJ, Chen PF, Ng KY, Bourgois-Rocha F, Lemtiri-Chlieh F, Levine ES, Lalande M (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107:17668–17673

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, Horvath TL, Vaccarino FM (2012) Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:12770–12775

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, Graziano DJ, Hopkins AM, Omenetto FG, Haydon PG, Kaplan DL (2014) Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci U S A 111:13811–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chwalek K, Sood D, Cantley WL, White JD, Tang-Schomer M, Kaplan DL (2015) Engineered 3D silk-collagen-based model of polarized neural tissue. J Vis Exp 105:e52970. https://doi.org/10.3791/52970

    Article  CAS  Google Scholar 

  9. Chwalek K, Tang-Schomer MD, Omenetto FG, Kaplan DL (2015) In vitro bioengineered model of cortical brain tissue. Nat Protoc 10:1362–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren M, Du C, Herrero Acero E, Tang-Schomer MD, Ozkucur N (2016) A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep 6:24953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sood D, Chwalek K, Stuntz E, Pouli D, Du C, Tang-Schomer MD, Georgakoudi I, Black LD, Kaplan DL (2016) Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS Biomater Sci Eng 2(1):131–140

    Article  CAS  PubMed  Google Scholar 

  12. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  13. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631

    Article  CAS  PubMed  Google Scholar 

  15. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT, Workshop Scientific Team and Advisory Panel Members (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738

    Article  PubMed  PubMed Central  Google Scholar 

  16. Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res 161:43–59

    Article  CAS  PubMed  Google Scholar 

  17. Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. J Neurotrauma 15:911–928

    Article  PubMed  Google Scholar 

  18. Potts MB, Adwanikar H, Noble-Haeusslein LJ (2009) Models of traumatic cerebellar injury. Cerebellum 8:211–221

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  20. Schmitt LI, Sims RE, Dale N, Haydon PG (2012) Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 32:4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27:2453–2454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David Kaplan and the Kaplan laboratory at Tufts University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min D. Tang-Schomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang-Schomer, M.D. (2018). Three-Dimensional In Vitro Brain Tissue Models. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics