Skip to main content

Assessments for Quantifying Neuromotor Functioning After Repetitive Blast Exposure

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

  • 635 Accesses

Abstract

Blast exposure may result in associated head trauma throughout the Traumatic Brain Injury (TBI) spectrum—ranging from weapon fire resulting in sub-concussive exposure and a mechanotransductive physiologic response to improvised explosive device (IED) detonation resulting in moderate and severe TBI associated with tissue-level disruption. Head trauma—regardless of severity—can result in changes to neurological functioning, which may alter neuromotor performance. Thus, measurement of neuromotor performance has been commonly used as a way to assess and track changes in functioning after head trauma. A number of subjective assessments have been developed over the years to help clinicians and researchers measure changes in neuromotor performance. In recent years, technological advances have led to more portable and cost-effective tools to objectively measure neuromotor performance, reducing the human error associated with subjective assessment. This chapter reviews relevant subjective and objective neuromotor assessments commonly used with populations who have head trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner RC, Naser ZJ, Bailes JE, Smith DW, Fisher JA, Rosen CL (2012) Effect of slosh mitigation on histologic markers of traumatic brain injury. J Neurosurg 117(6):1110–1118

    Article  PubMed  Google Scholar 

  2. Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Models Mech 6(6):1307–1315

    Article  CAS  Google Scholar 

  3. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9

    Article  CAS  PubMed  Google Scholar 

  4. Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76(2):97–104

    Article  PubMed  Google Scholar 

  5. Kovacs SK, Leonessa F, Ling GSF (2014) Blast TBI models, neuropathology, and implications for seizure risk. Front Neurol 5:47

    Article  PubMed  PubMed Central  Google Scholar 

  6. Snell FI, Halter MJ (2010) A signature wound of war: mild traumatic brain injury. J Psychosoc Nurs Ment Health Serv 48(2):22–28

    Article  PubMed  Google Scholar 

  7. Hoge C, McGurk D, Thomas J, Cox A, Engel C, Castro C (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358(5):453–463

    Article  PubMed  CAS  Google Scholar 

  8. Rhea CK, Kuznetsov NA, Ross SE, Long B, Jakiela JT, Bailie JM, Yanagi MA, Haran FJ, Wright WG, Robins RK, Sargent PD, Duckworth JL (2017) Development of a portable tool for screening neuromotor sequelae from repetitive low-level blast exposure. Mil Med 182(3/4):147–154

    Article  PubMed  Google Scholar 

  9. Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30(2):255–266

    Article  PubMed  Google Scholar 

  10. Stone JR, Tustison NJ, Wassermann EM, Polejaeva L, Tierney M, McCarron RM, LoPresti M, Carr WS (2013) Neuroimaging correlates of repetitive blast exposure in experienced military breachers. J Neurotrauma 30(15):A120–A121

    Google Scholar 

  11. Carr W, Polejaeva E, Grome A, Crandall B, LaValle C, Eonta SE, Young LA (2015) Relation of repeated low-level blast exposure with symptomology similar to concussion. J Head Trauma Rehabil 30(1):47–55

    Article  PubMed  Google Scholar 

  12. Tate CM, Wang KK, Eonta S, Zhang Y, Carr W, Tortella FC, Hayes RL, Kamimori GH (2013) Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study. J Neurotrauma 30(19):1620–1630

    Article  PubMed  Google Scholar 

  13. Taber K, Warden D, Hurley R (2006) Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci 18(2):141–145

    Article  PubMed  Google Scholar 

  14. Shively SB, Perl DP (2012) Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—past, present, and future. J Head Trauma Rehabil 27(3):234–239

    Article  PubMed  Google Scholar 

  15. Ling G, Bandak F, Armonda R, Grant G, Ecklund J (2009) Explosive blast neurotrauma. J Neurotrauma 26(6):815–825

    Article  PubMed  Google Scholar 

  16. Adam O, Mac Donald CL, Rivet D, Ritter J, May T, Barefield M, Duckworth J, LaBarge D, Asher D, Drinkwine B (2015) Clinical and imaging assessment of acute combat mild traumatic brain injury in Afghanistan. Neurology 85(3):219–227

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R (2011) Detection of blast-related traumatic brain injury in US military personnel. N Engl J Med 364(22):2091–2100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. DePalma RG, Burris DG, Champion HR, Hodgson MJ (2005) Blast injuries. N Engl J Med 352(13):1335–1342

    Article  PubMed  CAS  Google Scholar 

  19. Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA (2009) Cognitive sequelae of blast-related versus other mechanisms of brain trauma. J Int Neuropsychol Soc 15(1):1

    Article  PubMed  Google Scholar 

  20. Needham CE, Ritzel D, Rule GT, Wiri S, Young L (2015) Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front Neurol 6:72

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wiri S, Wofford T, Dent T, Needham C (2017) Reconstruction of recoilless weapon blast environments using high-fidelity simulations. In: 30th international symposium on shock waves 2. Springer, pp 1367–1371

    Chapter  Google Scholar 

  22. Broglio SP, McCrea M, McAllister T, Harezlak J, Katz B, Hack D, Hainline B, Investigators CC (2017) A national study on the effects of concussion in collegiate athletes and US military service academy members: the NCAA–DoD Concussion Assessment, Research and Education (CARE) consortium structure and methods. Sports Med 47(7):1437–1451

    Article  PubMed  PubMed Central  Google Scholar 

  23. Manley GT, Macdonald CL, Markowitz A, Stephenson D, Robbins A, Gardner RC, Winkler EA, Bodien Y, Taylor S, Yue JK (2017) The Traumatic Brain Injury Endpoints Development (TED) initiative: progress on a public-private regulatory collaboration to accelerate diagnosis and treatment of traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2016.4729

  24. Walker WC, Carne W, Franke L, Nolen T, Dikmen S, Cifu D, Wilson K, Belanger H, Williams R (2016) The Chronic Effects of Neurotrauma Consortium (CENC) multi-centre observational study: description of study and characteristics of early participants. Brain Inj 30(12):1469–1480

    Article  PubMed  CAS  Google Scholar 

  25. Mendez MF, Owens EM, Reza Berenji G, Peppers DC, Liang L-J, Licht EA (2013) Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation 32(2):397–407

    PubMed  Google Scholar 

  26. Young L, Rule GT, Bocchieri RT, Walilko TJ, Burns JM, Ling G (2015) When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain. Front Neurol 6:89

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dennis A, Kochanek P (2007) Pathobiology of blast injury. In: Intensive care medicine. Springer, Berlin, Heidelberg, pp 1011–1022

    Google Scholar 

  28. Bandak F, Ling G, Bandak A, De Lanerolle N (2014) Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury. Handb Clin Neurol 127:89–104

    Article  Google Scholar 

  29. Shively SB, Horkayne-Szakaly I, Jones RV, Kelly JP, Armstrong RC, Perl DP (2016) Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 15(9):944–953

    Article  PubMed  Google Scholar 

  30. Iacono D, Shively SB, Edlow BL, Perl DP (2017) Chronic traumatic encephalopathy. Phys Med Rehabil Clin 28(2):301–321

    Article  Google Scholar 

  31. Goldstein LE, Fisher AM, Tagge CA, Zhang X-L, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4(134):134ra160

    Article  Google Scholar 

  32. Belanger HG, Proctor-Weber Z, Kretzmer T, Kim M, French LM, Vanderploeg RD (2011) Symptom complaints following reports of blast versus non-blast mild TBI: does mechanism of injury matter? Clin Neuropsychol 25(5):702–715

    Article  PubMed  Google Scholar 

  33. Lippa SM, Pastorek NJ, Benge JF, Thornton GM (2010) Postconcussive symptoms after blast and nonblast-related mild traumatic brain injuries in Afghanistan and Iraq war veterans. J Int Neuropsychol Soc 16(5):856

    Article  PubMed  Google Scholar 

  34. Lange RT, Pancholi S, Brickell TA, Sakura S, Bhagwat A, Merritt V, French LM (2012) Neuropsychological outcome from blast versus non-blast: mild traumatic brain injury in US military service members. J Int Neuropsychol Soc 18(3):595

    Article  PubMed  Google Scholar 

  35. Bazarian JJ (2016) Can serum brain proteins aid in concussion identification? Bridge Linking Eng Soc 46(1):26–30

    Google Scholar 

  36. Smith DH (2016) Neuromechanics and pathophysiology of diffuse axonal injury in concussion. Bridge Linking Eng Soc 46(1):79–84

    Google Scholar 

  37. Alberts JL (2016) A multidisciplinary approach to concussion management. Bridge Linking Eng Soc 46(1):23–25

    Google Scholar 

  38. Talavage TM (2016) Medical imaging to recharacterize concussion for improved diagnosis in asymptomatic athletes. Bridge Linking Eng Soc 46(1):91–97

    Google Scholar 

  39. Fralick M, Thiruchelvam D, Tien HC, Redelmeier DA (2016) Risk of suicide after a concussion. Can Med Assoc J 188(7):497–504

    Article  Google Scholar 

  40. Gysland SM, Mihalik JP, Register-Mihalik JK, Trulock SC, Shields EW, Guskiewicz KM (2012) The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Ann Biomed Eng 40(1):14–22

    Article  PubMed  Google Scholar 

  41. Abbas K, Shenk TE, Poole VN, Breedlove EL, Leverenz LJ, Nauman EA, Talavage TM, Robinson ME (2015) Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect 5(2):91–101

    Article  PubMed  Google Scholar 

  42. Poole VN, Breedlove EL, Shenk TE, Abbas K, Robinson ME, Leverenz LJ, Nauman EA, Dydak U, Talavage TM (2015) Sub-concussive hit characteristics predict deviant brain metabolism in football athletes. Dev Neuropsychol 40(1):12–17

    Article  PubMed  Google Scholar 

  43. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68(7):709

    Article  PubMed  Google Scholar 

  44. Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, Feuer H, Leverenz LJ (2014) Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 31(4):327–338

    Article  PubMed  PubMed Central  Google Scholar 

  45. Myer GD, Yuan W, Foss KDB, Smith D, Altaye M, Reches A, Leach J, Kiefer AW, Khoury JC, Weiss M (2016) The effects of external jugular compression applied during head impact exposure on longitudinal changes in brain neuroanatomical and neurophysiological biomarkers: a preliminary investigation. Front Neurol 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haran FJ, Tierney R, Wright GW, Keshner E, Silter M (2013) Acute changes in postural control after soccer heading. Int J Sports Med 34(4):350–354

    PubMed  CAS  Google Scholar 

  47. Gavett BE, Stern RA, McKee AC (2011) Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 30(1):179–188

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wunderle K, Hoeger KM, Wasserman E, Bazarian JJ (2014) Menstrual phase as predictor of outcome after mild traumatic brain injury in women. J Head Trauma Rehabil 29(5):E1–E8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu D, Zhu H, Thompson PM, Toga AW (2007) Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex 17(7):1550–1560

    Article  PubMed  Google Scholar 

  50. Covassin T, Swanik CB, Sachs ML (2003) Sex differences and the incidence of concussions among collegiate athletes. J Athl Train 38(3):238

    PubMed  PubMed Central  Google Scholar 

  51. Dick R (2009) Is there a gender difference in concussion incidence and outcomes? Br J Sports Med 43(Suppl 1):i46–i50

    Article  PubMed  Google Scholar 

  52. Covassin T, Elbin R, Harris W, Parker T, Kontos A (2012) The role of age and sex in symptoms, neurocognitive performance, and postural stability in athletes after concussion. Am J Sports Med 40(6):1303–1312

    Article  PubMed  Google Scholar 

  53. Rothweiler B, Temkin NR, Dikmen SS (1998) Aging effect on psychosocial outcome in traumatic brain injury. Arch Phys Med Rehabil 79(8):881–887

    Article  PubMed  CAS  Google Scholar 

  54. Broglio SP, Eckner JT, Paulson HL, Kutcher JS (2012) Cognitive decline and aging: the role of concussive and subconcussive impacts. Exerc Sport Sci Rev 40(3):138–144

    PubMed  PubMed Central  Google Scholar 

  55. Coronado VG, Haileyesus T, Cheng TA, Bell JM, Haarbauer-Krupa J, Lionbarger MR, Flores-Herrera J, McGuire LC, Gilchrist J (2015) Trends in sports-and recreation-related traumatic brain injuries treated in US emergency departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001-2012. J Head Trauma Rehabil 30(3):185–197

    Article  PubMed  PubMed Central  Google Scholar 

  56. Langton L (2010) Women in law enforcement. Bureau of Justice Statistics, Washington, DC. https://www.bjs.gov/content/pub/pdf/wle8708.pdf

    Google Scholar 

  57. Duckworth JL, Grimes J, Ling GS (2013) Pathophysiology of battlefield associated traumatic brain injury. Pathophysiology 20(1):23–30

    Article  PubMed  Google Scholar 

  58. Mayer AR, Quinn DK, Master CL (2017) The spectrum of mild traumatic brain injury. Neurology 89(6):623–632

    Article  PubMed  PubMed Central  Google Scholar 

  59. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, Cantu RC, Cassidy D, Echemendia RJ, Castellani RJ (2017) Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med 51(11):838–847. bjsports-2017-097699

    PubMed  Google Scholar 

  60. Tyson S, Connell L (2009) How to measure balance in clinical practice. A systematic review of the psychometrics and clinical utility of measures of balance activity for neurological conditions. Clin Rehabil 23(9):824–840

    Article  PubMed  CAS  Google Scholar 

  61. Walker WC, Pickett TC (2007) Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehabil Res Dev 44(7):975

    Article  PubMed  Google Scholar 

  62. Ragnarsdóttir M (1996) The concept of balance. Physiotherapy 82(6):368–375

    Article  Google Scholar 

  63. Finnoff JT, Peterson VJ, Hollman JH, Smith J (2009) Intrarater and interrater reliability of the Balance Error Scoring System (BESS). PM&R 1(1):50–54

    Article  Google Scholar 

  64. Reed-Jones RJ, Murray NG, Powell DW (2014) Clinical assessment of balance in adults with concussion. In: Seminars in speech and language, Vol 03. Thieme Medical Publishers. pp 186–195

    Google Scholar 

  65. Chang JO, Levy SS, Seay SW, Goble DJ (2014) An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing. Clin J Sport Med 24(3):256–262

    Article  PubMed  Google Scholar 

  66. Kuznetsov NA, Robins RK, Long B, Jakiela JT, Haran FJ, Ross SE, Wright GW, Rhea CK (2018) Validity and reliability of smartphone orientation measurement to quantify dynamic balance function. Physiological Measurement 39(2), 02NT01

    Article  PubMed  Google Scholar 

  67. Vohralik SL, Bowen AR, Burns J, Hiller CE, Nightingale EJ (2015) Reliability and validity of a smartphone app to measure joint range. Am J Phys Med Rehabil 94(4):325–330

    Article  PubMed  Google Scholar 

  68. Boissy P, Diop-Fallou S, Lebel K, Bernier M, Balg F, Tousignant-Laflamme Y (2017) Trueness and minimal detectable change of smartphone inclinometer measurements of shoulder range of motion. Telemed e-Health 23(6):503–506

    Article  Google Scholar 

  69. Norris ES, Wright E, Sims S, Fuller M, Neelly K (2017) The reliability of smartphone and goniometric measurements of hip range of motion. J Rehabil Sci Res 3(4):77–84

    Google Scholar 

  70. Morales CR, Lobo CC, Sanz DR, Corbalán IS, Ruiz BR, López DL (2017) The concurrent validity and reliability of the Leg Motion system for measuring ankle dorsiflexion range of motion in older adults. PeerJ 5:e2820

    Article  Google Scholar 

  71. Mourcou Q, Fleury A, Franco C, Klopcic F, Vuillerme N (2015) Performance evaluation of smartphone inertial sensors measurement for range of motion. Sensors 15(9):23168–23187

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patterson JA, Amick RZ, Thummar T, Rogers ME (2014) Validation of measures from the smartphone sway balance application: a pilot study. Int J Sports Phys Ther 9(2):135–139

    PubMed  PubMed Central  Google Scholar 

  73. Patterson JA, Amick RZ, Pandya PD, Hakansson N, Jorgensen MJ (2014) Comparison of a mobile technology application with the Balance Error Scoring System. Int J Athl Ther Train 19(3):4–7

    Article  Google Scholar 

  74. Baloh RW, Fife TD, Zwerling L, Socotch T, Jacobson K, Bell T, Beykirch K (1994) Comparison of static and dynamic posturography in young and older normal people. J Am Geriatr Soc 42(4):405–412

    Article  PubMed  CAS  Google Scholar 

  75. Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M (2010) Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31(3):307–310

    Article  PubMed  Google Scholar 

  76. Rehan Youssef A, Gumaa M (2017) Validity and reliability of smartphone applications for clinical assessment of the neuromusculoskeletal system. Expert Rev Med Devices 14(6):481–493

    Article  PubMed  CAS  Google Scholar 

  77. Riemann BL, Guskiewicz KM, Shields EW (1999) Relationship between clinical and forceplate measures of postural stability. J Sport Rehabil 8(2):71–82

    Article  Google Scholar 

  78. Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA (2009) The reliability of the modified balance error scoring system. Clin J Sport Med 19(6):471–475

    Article  PubMed  Google Scholar 

  79. McCrea M, Guskiewicz K, Randolph C, Barr WB, Hammeke TA, Marshall SW, Powell MR, Ahn KW, Wang Y, Kelly JP (2013) Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. J Int Neuropsychol Soc 19(1):22–33

    Article  PubMed  Google Scholar 

  80. Riemann BL, Guskiewicz KM (2000) Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train 35(1):19–25

    PubMed  PubMed Central  CAS  Google Scholar 

  81. McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, Onate JA, Yang J, Kelly JP (2003) Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA 290(19):2556–2563

    Article  PubMed  CAS  Google Scholar 

  82. Guskiewicz KM, Ross SE, Marshall SW (2001) Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train 36(3):263–273

    PubMed  PubMed Central  Google Scholar 

  83. Rochefort C, Walters-Stewart C, Aglipay M, Barrowman N, Zemek R, Sveistrup H (2017) Balance markers in adolescents at 1 month postconcussion. Orthop J Sports Med 5(3):2325967117695507

    Article  PubMed  PubMed Central  Google Scholar 

  84. Berg KO, Wood-Dauphinee S, Williams JI, Gayton D (1989) Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 41:304–311

    Article  Google Scholar 

  85. Blum L, Korner-Bitensky N (2008) Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther 88(5):559–566

    Article  PubMed  Google Scholar 

  86. Saether R, Helbostad JL, Riphagen II, Vik T (2013) Clinical tools to assess balance in children and adults with cerebral palsy: a systematic review. Dev Med Child Neurol 55(11):988–999

    Article  PubMed  Google Scholar 

  87. Feld JA, Rabadi MH, Blau AD, Jordan BD (2001) Berg balance scale and outcome measures in acquired brain injury. Neurorehabil Neural Repair 15(3):239–244

    Article  PubMed  CAS  Google Scholar 

  88. Hays K, O’Dell DR, Cuthbert JP, Tefertiller C, Natale A (2015) Virtual-reality based therapy for balance deficits during traumatic brain injury inpatient rehabilitation. Arch Phys Med Rehabil 96(10):e44

    Article  Google Scholar 

  89. Wrisley DM, Marchetti GF, Kurharsky DK, Whitney SL (2004) Reliability, internal consistency, and validity of data obtained with the. Funct Gait Assess Phys Ther 84(10):906–918

    Google Scholar 

  90. Shumway-Cook A, Woollacott MH (1995) Motor control: theory and practical applications. Lippincott Williams & Williams, Baltimore

    Google Scholar 

  91. Alsalaheen BA, Whitney SL, Marchetti GF, Furman JM, Kontos AP, Collins MW, Sparto PJ (2016) Relationship between cognitive assessment and balance measures in adolescents referred for vestibular physical therapy after concussion. Clin J Sport Med 26(1):46–52

    Article  PubMed  PubMed Central  Google Scholar 

  92. Howe J, Inness E, Venturini A, Williams J, Verrier M (2006) The Community Balance and Mobility Scale—a balance measure for individuals with traumatic brain injury. Clin Rehabil 20(10):885–895

    Article  PubMed  CAS  Google Scholar 

  93. Guskiewicz KM, Riemann BL, Perrin DH, Nashner LM (1997) Alternative approaches to the assessment of mild head injury in athletes. Med Sci Sports Exerc 29:S213–S221

    PubMed  CAS  Google Scholar 

  94. Lehmann J, Boswell S, Price R, Burleigh A, DeLateur B, Jaffe K, Hertling D (1990) Quantitative evaluation of sway as an indicator of functional balance in post-traumatic brain injury. Arch Phys Med Rehabil 71(12):955–962

    PubMed  CAS  Google Scholar 

  95. Wöber C, Oder W, Kollegger H, Prayer L, Baumgartner C, Wöber-Bingöl C, Wimberger D, Binder H, Deecke L (1993) Posturographic measurement of body sway in survivors of severe closed head injury. Arch Phys Med Rehabil 74(11):1151–1156

    PubMed  Google Scholar 

  96. Haaland KY, Temkin N, Randahl G, Dikmen S (1994) Recovery of simple motor skills after head injury. J Clin Exp Neuropsychol 16(3):448–456

    Article  PubMed  CAS  Google Scholar 

  97. Cavanaugh JT, Guskiewicz KM, Giuliani C, Marshall SW, Mercer VS, Stergiou N (2005) Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br J Sports Med 39(11):805–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pickett TC, Radfar-Baublitz LS, McDonald SD, Walker WC, Cifu DX (2007) Objectively assessing balance deficits after TBI: role of computerized posturography. J Rehabil Res Dev 44(7):983–990

    Article  PubMed  Google Scholar 

  99. Gao J, Hu J, Buckley T, White K, Hass C (2011) Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One 6(9):e24446. https://doi.org/10.1371/journal.pone.0024446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sosnoff JJ, Broglio SP, Shin S, Ferrara MS (2011) Previous mild traumatic brain injury and postural-control dynamics. J Athl Train 46(1):85–91

    Article  PubMed  PubMed Central  Google Scholar 

  101. Powers KC, Kalmar JM, Cinelli ME (2014) Recovery of static stability following a concussion. Gait Posture 39(1):611–614

    Article  PubMed  Google Scholar 

  102. Fino PC, Nussbaum MA, Brolinson PG (2016) Decreased high-frequency center-of-pressure complexity in recently concussed asymptomatic athletes. Gait Posture 50:69–74

    Article  PubMed  Google Scholar 

  103. Buckley TA, Oldham JR, Caccese JB (2016) Postural control deficits identify lingering post-concussion neurological deficits. J Sport Health Sci 5(1):61–69

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kaufman KR, Brey RH, Chou L-S, Rabatin A, Brown AW, Basford JR (2006) Comparison of subjective and objective measurements of balance disorders following traumatic brain injury. Med Eng Phys 28(3):234–239

    Article  PubMed  Google Scholar 

  105. Wright WG, McDevitt J, Tierney R, Haran FJ, Appiah-Kubi KO, Dumont A (2017) Assessing subacute mild traumatic brain injury with a portable virtual reality balance device. Disabil Rehabil 39(15):1564–1572

    Article  PubMed  Google Scholar 

  106. Mayagoitia RE, Lötters JC, Veltink PH, Hermens H (2002) Standing balance evaluation using a triaxial accelerometer. Gait Posture 16(1):55–59

    Article  PubMed  Google Scholar 

  107. Howell D, Osternig L, Chou L-S (2015) Monitoring recovery of gait balance control following concussion using an accelerometer. J Biomech 48(12):3364–3368

    Article  PubMed  Google Scholar 

  108. Brown CN, Mynark R (2007) Balance deficits in recreational athletes with chronic ankle instability. J Athl Train 42(3):367–373

    PubMed  PubMed Central  Google Scholar 

  109. O’Sullivan M, Blake C, Cunningham C, Boyle G, Finucane C (2009) Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 38(3):308–313

    Article  PubMed  Google Scholar 

  110. Alberts JL, Hirsch JR, Koop MM, Schindler DD, Kana DE, Linder SM, Campbell S, Thota AK (2015) Using accelerometer and gyroscopic measures to quantify postural stability. J Athl Train 50(6):578–588

    Article  PubMed  PubMed Central  Google Scholar 

  111. Soangra R, Lockhart TE (2013) Comparison of intra-individual physiological sway complexity from force plate and inertial measurement unit. Biomed Sci Instrum 49:180–186

    PubMed  PubMed Central  Google Scholar 

  112. Omkar S, Ganesh D, Kiran PK (2009) Standing balance: Quantification and the impact of visual sensory input. Indian J Physiother Occup Ther 3(3):44–48

    Google Scholar 

  113. Brown HJ, Siegmund GP, Doel KV, Cretu E, Guskiewicz K, Blouin J-S (2013) Development and validation of an objective balance assessment system. J Exerc Mov Sport 45(1):4

    Google Scholar 

  114. Cohen HS, Mulavara AP, Peters BT, Sangi-Haghpeykar H, Bloomberg JJ (2014) Standing balance tests for screening people with vestibular impairments. Laryngoscope 124(2):545–550

    Article  PubMed  Google Scholar 

  115. Boulos MNK, Brewer AC, Karimkhani C, Buller DB, Dellavalle RP (2014) Mobile medical and health apps: state of the art, concerns, regulatory control and certification. Online J Public Health Inform 5(3):229

    PubMed  PubMed Central  Google Scholar 

  116. Roeing KL, Hsieh KL, Sosnoff JJ (2017) A systematic review of balance and fall risk assessments with mobile phone technology. Arch Gerontol Geriatr 73:222–226

    Article  PubMed  Google Scholar 

  117. Lee B-C, Kim J, Chen S, Sienko KH (2012) Cell phone based balance trainer. J Neuroeng Rehabil 9(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  118. Amick RZ, Chaparro A, Patterson JA, Jorgensen MJ (2015) Test-retest reliability of the sway balance mobile application. J Mobile Technol Med 4(2):40–47

    Article  Google Scholar 

  119. Mourcou Q, Fleury A, Franco C, Diot B, Vuillerme N (2015) Smartphone-based system for sensorimotor control assessment, monitoring, improving and training at home. In: International conference on smart homes and health telematics. Springer, Cham. pp 141–151

    Chapter  Google Scholar 

  120. Shah N, Aleong R, So I (2016) Novel use of a smartphone to measure standing balance. JMIR Rehabil Assist Technol 3(1):e4

    Article  PubMed  PubMed Central  Google Scholar 

  121. Burghart M, Craig J, Radel J, Huisinga J (2017) Reliability and validity of a mobile device application for use in sports-related concussion balance assessment. Curr Res Concuss 4(1):e1–e6

    Article  Google Scholar 

  122. Williams G, Galna B, Morris ME, Olver J (2010) Spatiotemporal deficits and kinematic classification of gait following a traumatic brain injury: a systematic review. J Head Trauma Rehabil 25(5):366–374

    Article  PubMed  Google Scholar 

  123. Basford JR, Chou L-S, Kaufman KR, Brey RH, Walker A, Malec JF, Moessner AM, Brown AW (2003) An assessment of gait and balance deficits after traumatic brain injury. Arch Phys Med Rehabil 84(3):343–349

    Article  PubMed  Google Scholar 

  124. Ochi F, Esquenazi A, Hirai B, Talaty M (1999) Temporal–spatial feature of Fait after traumatic brain injury. J Head Trauma Rehabil 14(2):105–115

    Article  PubMed  CAS  Google Scholar 

  125. Perry J (1999) The use of gait analysis for surgical recommendations in traumatic brain injury. J Head Trauma Rehabil 14(2):116–135

    Article  PubMed  CAS  Google Scholar 

  126. Kerrigan DC, Bang M-S, Burke DT (1999) An algorithm to assess stiff-legged gait in traumatic brain injury. J Head Trauma Rehabil 14(2):136–145

    Article  PubMed  CAS  Google Scholar 

  127. McFadyen BJ, Swaine B, Dumas D, Durand A (2003) Residual effects of a traumatic brain injury on locomotor capacity: a first study of spatiotemporal patterns during unobstructed and obstructed walking. J Head Trauma Rehabil 18(6):512–525

    Article  PubMed  Google Scholar 

  128. Chou L-S, Kaufman KR, Walker-Rabatin AE, Brey RH, Basford JR (2004) Dynamic instability during obstacle crossing following traumatic brain injury. Gait Posture 20(3):245–254

    Article  PubMed  Google Scholar 

  129. Catena RD, Donkelaar P, Halterman C, Chou LS (2009) Spatial orientation of attention and obstacle avoidance following concussion. Exp Brain Res 194(1):67–77. https://doi.org/10.1007/s00221-008-1669-1

    Article  PubMed  Google Scholar 

  130. Catena RD, van Donkelaar P, Chou LS (2007) Altered balance control following concussion is better detected with an attention test during gait. Gait Posture 25(3):406–411. https://doi.org/10.1016/j.gaitpost.2006.05.006

    Article  PubMed  Google Scholar 

  131. Catena RD, van Donkelaar P, Chou L-S (2009) Different gait tasks distinguish immediate vs. long-term effects of concussion on balance control. J Neuroeng Rehabil 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chiu S-L, Osternig L, Chou L-S (2013) Concussion induces gait inter-joint coordination variability under conditions of divided attention and obstacle crossing. Gait Posture 38(4):717–722

    Article  PubMed  Google Scholar 

  133. Cantin J-F, McFadyen BJ, Doyon J, Swaine B, Dumas D, Vallée M (2007) Can measures of cognitive function predict locomotor behaviour in complex environments following a traumatic brain injury? Brain Inj 21(3):327–334

    Article  PubMed  Google Scholar 

  134. McFadyen BJ, Cantin J-F, Swaine B, Duchesneau G, Doyon J, Dumas D, Fait P (2009) Modality-specific, multitask locomotor deficits persist despite good recovery after a traumatic brain injury. Arch Phys Med Rehabil 90(9):1596–1606

    Article  PubMed  Google Scholar 

  135. Baker CS, Cinelli ME (2014) Visuomotor deficits during locomotion in previously concussed athletes 30 or more days following return to play. Physiol Rep 2(12):e12252

    Article  PubMed  PubMed Central  Google Scholar 

  136. Parker TM, Osternig LR, Van Donkelaar P, Chou L (2006) Gait stability following concussion. Med Sci Sports Exerc 38(6):1032–1040

    Article  PubMed  Google Scholar 

  137. Catena RD, van Donkelaar P, Chou LS (2011) The effects of attention capacity on dynamic balance control following concussion. J Neuroeng Rehabil 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  138. Catena RD, van Donkelaar P, Chou LS (2007) Cognitive task effects on gait stability following concussion. Exp Brain Res 176(1):23–31. https://doi.org/10.1007/s00221-006-0596-2

    Article  PubMed  Google Scholar 

  139. Parker TM, Osternig LR, Lee H-J, Pv D, Chou L-S (2005) The effect of divided attention on gait stability following concussion. Clin Biomech 20(4):389–395. https://doi.org/10.1016/j.clinbiomech.2004.12.004

    Article  Google Scholar 

  140. Fino PC, Nussbaum MA, Brolinson PG (2016) Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results. J Neuroeng Rehabil 13(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  141. Pietrzak E, Pullman S, McGuire A (2014) Using virtual reality and videogames for traumatic brain injury rehabilitation: a structured literature review. Games Health Res Dev Clin Appl 3(4):202–214

    Article  Google Scholar 

  142. Ustinova K, Perkins J, Leonard W, Hausbeck C (2014) Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: a pilot study. Brain Inj 28(4):486–495

    Article  PubMed  CAS  Google Scholar 

  143. Rábago CA, Wilken JM (2011) Application of a mild traumatic brain injury rehabilitation program in a virtual realty environment: a case study. J Neurol Phys Ther 35(4):185–193

    Article  PubMed  Google Scholar 

  144. Muir B, Lynn A, Maguire M, Ryan B, Calow D, Duffy M, Souckey Z (2014) A pilot study of postural stability testing using controls: the modified BESS protocol integrated with an H-pattern visual screen and fixed gaze coupled with cervical range of motion. J Can Chiropr Assoc 58(4):361

    PubMed  PubMed Central  Google Scholar 

  145. Hänninen T, Tuominen M, Parkkari J, Vartiainen M, Öhman J, Iverson GL, Luoto TM (2016) Sport concussion assessment tool–3rd edition–normative reference values for professional ice hockey players. J Sci Med Sport 19(8):636–641

    Article  PubMed  Google Scholar 

  146. Cohen HS, Blatchly CA, Gombash LL (1993) A study of the clinical test of sensory interaction and balance. Phys Ther 73(6):346–351

    Article  PubMed  CAS  Google Scholar 

  147. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83:S7–S11

    PubMed  Google Scholar 

  148. O’Connor SM, Baweja HS, Goble DJ (2016) Validating the BTrackS Balance Plate as a low cost alternative for the measurement of sway-induced center of pressure. J Biomech 49(16):4142–4145

    Article  PubMed  Google Scholar 

  149. Goble DJ, Manyak KA, Abdenour TE, Rauh MJ, Baweja HS (2016) An initial evaluation of the BTrackS balance plate and sports balance software for concussion diagnosis. Int J Sports Phys Ther 11(2):149–155

    PubMed  PubMed Central  Google Scholar 

  150. Benedict SE, Hinshaw JW, Byron-Fields R, Baweja HS, Goble DJ (2017) Effects of fatigue on the BTrackS balance test for concussion management. Int J Athl Ther Train 22(4):23–28

    Article  Google Scholar 

  151. Bartlett HL, Ting LH, Bingham JT (2014) Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 39(1):224–228

    Article  PubMed  Google Scholar 

  152. Rhea CK, Kuznetsov NA, Robins RK, Jakiela JT, LoJacono CT, Ross SE, MacPherson RP, Long B, Haran FJ (2017) Wright WG Dynamic balance decrements last longer than 10 days following a concussion. In: International Society of Posture & Gait Research, Ft. Lauderdale, FL

    Google Scholar 

  153. Glass L, Mackey MC (1979) Pathological conditions resulting from instabilities in physiological control systems. Ann N Y Acad Sci 316:214–235

    Article  PubMed  CAS  Google Scholar 

  154. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  PubMed  CAS  Google Scholar 

  155. Mackey MC, Milton JG (1987) Dynamical diseases. Ann N Y Acad Sci 504:16–32

    Article  PubMed  CAS  Google Scholar 

  156. West BJ, Goldberger AL (1987) Physiology in fractal dimensions. Am Sci 75:354–365

    Google Scholar 

  157. Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractals in human physiology. Sci Am 262:42–49

    Article  PubMed  CAS  Google Scholar 

  158. Bélair J, Glass L, an der Heiden U, Milton J (1995) Dynamical disease: identification, temporal aspects and treatment strategies of human illness. Chaos Interdiscipl J Nonlinear Sc 5(1):1–7

    Article  Google Scholar 

  159. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78(1):349–358

    Article  PubMed  CAS  Google Scholar 

  160. Vaillancourt DE, Newell K (2002) Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23(1):1–11

    Article  PubMed  Google Scholar 

  161. Hausdorff JM (2007) Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci 26(4):555–589

    Article  PubMed  PubMed Central  Google Scholar 

  162. Stergiou N, Decker LM (2011) Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci 30(5):869–888

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rhea CK, Kiefer AW (2014) Patterned variability in gait behavior: how can it be measured and what does it mean? In: Li L, Holmes M (eds) Gait biometrics: basic patterns, role of neurological disorders and effects of physical activity. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  164. van Emmerik RE, Ducharme SW, Amado A, Hamill J (2016) Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Health Sci 5(1):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  165. Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ (2016) Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci 47:197–208

    Article  PubMed  Google Scholar 

  166. Cavanaugh JT, Guskiewicz KM, Giuliani C, Marshall SW, Mercer VS, Stergiou N (2006) Recovery of postural control after cerebral concussion: new insights using approximate entropy. J Athl Train 41(3):305–313

    PubMed  PubMed Central  Google Scholar 

  167. Cavanaugh JT, Guskiewicz KM, Stergiou N (2005) A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion. Sports Med 35(11):935–950

    Article  PubMed  Google Scholar 

  168. Fino PC (2016) A preliminary study of longitudinal differences in local dynamic stability between recently concussed and healthy athletes during single and dual-task gait. J Biomech 49(9):1983–1988

    Article  PubMed  Google Scholar 

  169. Fox ZG, Mihalik JP, Blackburn JT, Battaglini CL, Guskiewicz KM (2008) Return of postural control to baseline after anaerobic and aerobic exercise protocols. J Athl Train 43(5):456–463

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Department of Defense, the Uniformed Services University of the Health Sciences, or any other agency of the U.S. Government. This work was supported by funding from the United States Department of Defense to each of the following primary investigators: Christopher K. Rhea (W81XWH-15-1-0094; W91CRB-11-D-0001, subcontract P010202825; HU0001-08-1-0001, subcontract 2890; HU0001-15-2-0024, subcontract 3137), W. Geoff Wright (W81XWH-13-C-0189), F. Jay Haran (604110HP.4270.001.A1411; FY13-PH-TBI-WII-255), and to Josh L. Duckworth (HU0001-14-1-0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Rhea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rhea, C.K., Kuznetsov, N.A., Wright, W.G., Haran, F.J., Ross, S.E., Duckworth, J.L. (2018). Assessments for Quantifying Neuromotor Functioning After Repetitive Blast Exposure. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics