Skip to main content

Laser Capture Microdissection of Single Cells, Cell Populations, and Brain Regions Affected by Traumatic Brain Injury

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

  • 636 Accesses

Abstract

Since its introduction, laser capture microdissection (LCM) methods have been extensively employed to study cell-specific functions in complex, heterogeneous tissues composed of multiple cell types. Laser capture microdissection is particularly suited to studies of the mammalian brain, which, because of its heterogeneity, presents a major challenge in studies that attempt to correlate region or cell type-specific function with distinct gene expression profiles. We have used LCM to study genomic changes in rat brain after experimental traumatic brain injury (TBI). The use of LCM allows precise measures of TBI-induced changes in gene expression in identified populations of brain cells and in anatomically distinct subregions of the rat hippocampus. We have been able to study gene expression in specific populations of dying and surviving hippocampal neurons after TBI and to detect circadian clock dysfunction in the suprachiasmatic nucleus after TBI. We have also used LCM to study epigenetic changes following TBI, mediated in part by small, noncoding microRNAs in different brain regions. We found strikingly different microRNAs are expressed in laser-captured single neurons compared to laser-captured brain areas from which they originate and manually dissected brain areas, indicating the importance of this technology to the study of TBI-induced changes in specific cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  3. Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483

    Article  PubMed  CAS  Google Scholar 

  4. Banks RE, Dunn MJ, Forbes MA, Stanley A, Pappin D, Naven T, Gough M, Harnden P, Selby PJ (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-- preliminary findings. Electrophoresis 20:689–700

    Article  PubMed  CAS  Google Scholar 

  5. Webb T (2000) Laser capture microdissection comes into mainstream use. J Natl Cancer Inst 92:1710–1711

    Article  PubMed  CAS  Google Scholar 

  6. Nagle RB (2001) New molecular approaches to tissue analysis. J Histochem Cytochem 49:1063–1064

    Article  PubMed  CAS  Google Scholar 

  7. Rubin MA (2001) Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J Pathol 195:80–86

    Article  PubMed  CAS  Google Scholar 

  8. Taatjes DJ, Palmer CJ, Pantano C, Hoffmann SB, Cummins A, Mossman BT (2001) Laser-based microscopic approaches: application to cell signaling in environmental lung disease. Biotechniques 31:880–888. 890, 892

    Article  PubMed  CAS  Google Scholar 

  9. Torres-Munoz J, Stockton P, Tacoronte N, Roberts B, Maronpot RR, Petito CK (2001) Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. J Neuropathol Exp Neurol 60:885–892

    Article  PubMed  CAS  Google Scholar 

  10. Trogan E, Choudhury RP, Dansky HM, Rong JX, Breslow JL, Fisher EA (2002) Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 99:2234–2239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol 158:2005–2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Suarez-Quian CA, Goldstein SR, Pohida T, Smith PD, Peterson JI, Wellner E, Ghany M, Bonner RF (1999) Laser capture microdissection of single cells from complex tissues. BioTechniques 26:328–335

    Article  PubMed  CAS  Google Scholar 

  13. Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: Big data from small samples. Histol Histopathol 30:1255–1269. https://doi.org/10.14670/HH-11-622. HH-11-622 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Burgess JK, Hazelton RH (2000) New developments in the analysis of gene expression. Redox Rep 5:63–73

    Article  PubMed  CAS  Google Scholar 

  15. Rekhter MD, Chen J (2001) Molecular analysis of complex tissues is facilitated by laser capture microdissection. Cell Biochem Biophys 35:103–113

    Article  PubMed  CAS  Google Scholar 

  16. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363:301–304. https://doi.org/10.1056/NEJMp1006304. NEJMp1006304 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. Pasinetti GM, Fivecoat H, Ho L (2010) Personalized medicine in traumatic brain injury. Psychiatr Clin North Am 33:905–913. https://doi.org/10.1016/j.psc.2010.09.003. S0193-953X(10)00078-X [pii]

    Article  PubMed  Google Scholar 

  18. Fend F, Kremer M, Quintanilla-Martinez L (2000) Laser capture microdissection: methodical aspects and applications with emphasis on immuno-laser capture microdissection. Pathobiology 68:209–214

    Article  PubMed  CAS  Google Scholar 

  19. Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Murakami H, Liotta L, Star RA (2000) IF-LCM: laser capture microdissection of immunofluorescently defined cells for mRNA analysis rapid communication. Kidney Int 58:1346–1353

    Article  PubMed  CAS  Google Scholar 

  21. Bernard R, Burke S, Kerman IA (2011) Region-specific in situ hybridization-guided laser-capture microdissection on postmortem human brain tissue coupled with gene expression quantification. In: Murray GL (ed) Laser capture microdissection: methods in moloecular biology. Springer Science & Business Media LLC, New York, pp 345–361

    Chapter  Google Scholar 

  22. Datson NA, Meijer L, Steenbergen PJ, Morsink MC, van der Laan S, Meijer OC, de Kloet ER (2004) Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur J Neurosci 20:2541–2554. https://doi.org/10.1111/j.1460-9568.2004.03738.x. EJN3738 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Segal JP, Stallings NR, Lee CE, Zhao L, Socci N, Viale A, Harris TM, Soares MB, Childs G, Elmquist JK, Parker KL, Friedman JM (2005) Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. J Neurosci 25:4181–4188. https://doi.org/10.1523/JNEUROSCI.0158-05.2005. 25/16/4181 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Paulsen SJ, Larsen LK, Jelsing J, Janssen U, Gerstmayer B, Vrang N (2009) Gene expression profiling of individual hypothalamic nuclei from single animals using laser capture microdissection and microarrays. J Neurosci Methods 177:87–93. https://doi.org/10.1016/j.jneumeth.2008.09.024. S0165-0270(08)00577-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Craven RA, Banks RE (2001) Laser capture microdissection and proteomics: possibilities and limitation. Proteomics 1:1200–1204

    Article  PubMed  CAS  Google Scholar 

  26. Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068. https://doi.org/10.1074/jbc.M403672200. M403672200 [pii]

    Article  PubMed  CAS  Google Scholar 

  27. Boone DR, Sell SL, Hellmich HL (2012) Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury. J Vis Exp 74:1–7

    Google Scholar 

  28. Weisz HA, Boone DR, Sell SL, Hellmich HL (2017) Stereotactic atlas-guided laser capture microdissection of brain regions affected by traumatic injury. J Vis Exp 11. https://doi.org/10.3791/56134

  29. Wang X, Pal R, Chen XW, Kumar KN, Kim OJ, Michaelis EK (2007) Genome-wide transcriptome profiling of region-specific vulnerability to oxidative stress in the hippocampus. Genomics 90:201–212. https://doi.org/10.1016/j.ygeno.2007.03.007. S0888-7543(07)00068-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Ko Y, Ament SA, Eddy JA, Caballero J, Earls JC, Hood L, Price ND (2013) Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain. Proc Natl Acad Sci U S A 110:3095–3100

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okaty BW, Sugino K, Nelson SB (2011) Cell type-specific transcriptomics in the brain. J Neurosci 31:6939–6943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Drexel M, Puhakka N, Kirchmair E, Hortnagl H, Pitkanen A, Sperk G (2015) Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology 88:122–133. https://doi.org/10.1016/j.neuropharm.2014.08.023. S0028-3908(14)00306-2 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Majak K, Dabrowski M, Pitkanen A (2009) Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning. Neuroscience 159:468–482. https://doi.org/10.1016/j.neuroscience.2008.12.060. S0306-4522(09)00004-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  34. Mahmood A, Wu H, Qu C, Mahmood S, Xiong Y, Kaplan D, Chopp M (2014) Down-regulation of Nogo-A by collagen scaffolds impregnated with bone marrow stromal cell treatment after traumatic brain injury promotes axonal regeneration in rats. Brain Res 1542:41–48. https://doi.org/10.1016/j.brainres.2013.10.045. S0006-8993(13)01455-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  35. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13:1496–1504. https://doi.org/10.1038/nn.2674. nn.2674 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134:2627–2641. https://doi.org/10.1093/brain/awr193. awr193 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu Q, Walker D, Bernardo A, Brodbeck J, Balestra ME, Huang Y (2008) Intron-3 retention/splicing controls neuronal expression of apolipoprotein E in the CNS. J Neurosci 28:1452–1459. https://doi.org/10.1523/JNEUROSCI.3253-07.2008. 28/6/1452 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mehta P, Premkumar B, Morris R (2016) Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM). Neurosci Lett 627:132–138. https://doi.org/10.1016/j.neulet.2016.05.063. S0304-3940(16)30393-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU (2010) Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 5:e11746. https://doi.org/10.1371/journal.pone.0011746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Huusko N, Pitkanen A (2014) Parvalbumin immunoreactivity and expression of GABAA receptor subunits in the thalamus after experimental TBI. Neuroscience 267:30–45. https://doi.org/10.1016/j.neuroscience.2014.02.026. S0306-4522(14)00138-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  41. Kigerl KA, Ankeny DP, Garg SK, Wei P, Guan Z, Lai W, McTigue DM, Banerjee R, Popovich PG (2012) System x(c)(−) regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp Neurol 233:333–341. https://doi.org/10.1016/j.expneurol.2011.10.025. S0014-4886(11)00397-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  42. Saxena T, Karumbaiah L, Gaupp EA, Patkar R, Patil K, Betancur M, Stanley GB, Bellamkonda RV (2013) The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials 34:4703–4713. https://doi.org/10.1016/j.biomaterials.2013.03.007. S0142-9612(13)00289-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  43. Martinez-Galvez G, Zambrano JM, Diaz Soto JC, Zhan WZ, Gransee HM, Sieck GC, Mantilla CB (2016) TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury. Exp Neurol 276:31–40. https://doi.org/10.1016/j.expneurol.2015.11.007. S0014-4886(15)30121-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  44. Lefebvre dC, Harry GJ (2005) Molecular profiles of mRNA levels in laser capture microdissected murine hippocampal regions differentially responsive to TMT-induced cell death. J Neurochem 93:206–220. https://doi.org/10.1111/j.1471-4159.2004.03017.x. JNC3017 [pii]

    Article  CAS  Google Scholar 

  45. Shimamura M, Garcia JM, Prough DS, Hellmich HL (2004) Laser capture microdissection and analysis of amplified antisense RNA from distinct cell populations of the young and aged rat brain: effect of traumatic brain injury on hippocampal gene expression. Mol Brain Res 17:47–61

    Article  CAS  Google Scholar 

  46. Shimamura M, Garcia JM, Prough DS, DeWitt DS, Uchida T, Shah SA, Avila MA, Hellmich HL (2005) Analysis of long-term gene expression in neurons of the hippocampal subfields following traumatic brain injury in rats. Neuroscience 131:87–97

    Article  PubMed  CAS  Google Scholar 

  47. Boone DR, Sell SL, Micci MA, Crookshanks JM, Parsley MA, Uchida T, Prough DS, DeWitt DS, Hellmich HL (2012) Traumatic brain injury-induced dysregulation of the circadian clock. PLoS One 7:e46204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fustin JM, Karakawa S, Okamura H (2017) Circadian profiling of amino acids in the SCN and cerebral cortex by laser capture microdissection-mass spectrometry. J Biol Rhythms 32:609–620. https://doi.org/10.1177/0748730417735922

    Article  PubMed  Google Scholar 

  49. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  50. Hellmich HL, Garcia JM, Shimamura M, Shah SA, Avila MA, Uchida T, Parsley MA, Capra BA, Eidson KA, Kennedy DR, Winston JH, DeWitt DS, Prough DS (2005) Traumatic brain injury and hemorrhagic hypotension suppress neuroprotective gene expression in injured hippocampal neurons. Anesthesiology 102:806–814

    Article  PubMed  Google Scholar 

  51. Hellmich HL, Rojo DR, Micci MA, Sell SL, Boone DR, Crookshanks JM, DeWitt DS, Masel BE, Prough DS (2013) Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury. PLoS One 8:e53230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Rojo DR, Prough DS, Boone DR, Micci MA, Kahrig KM, Crookshanks JM, Jimenez A, Uchida T, Cowart JC, Hawkins BE, Avila M, DeWitt DS, Hellmich HL (2011) Influence of stochastic gene expression on the cell survival rheostat after traumatic brain injury. PLoS One 6:e23111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Boone DR, Micci MA, Taglialatela IG, Hellmich JL, Weisz HA, Bi M, Prough DS, DeWitt DS, Hellmich HL (2015) Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS One 10:e0127287. https://doi.org/10.1371/journal.pone.0127287. PONE-D-14-52985 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Boone DR, Leek JM, Falduto MT, Torres KEO, Sell SL, Parsley MA, Cowart JC, Uchida T, Micci MA, DeWitt DS, Prough DS, Hellmich HL (2017) Effects of AAV-mediated knockdown of nNOS and GPx-1 gene expression in rat hippocampus after traumatic brain injury. PLoS One 12:e0185943. https://doi.org/10.1371/journal.pone.0185943. PONE-D-17-25338 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Boone DK, Weisz HA, Bi M, Falduto MT, Torres KEO, Willey HE, Volsko CM, Kumar AM, Micci MA, DeWitt DS, Prough DS, Hellmich HL (2017) Evidence linking microRNA suppression of essential prosurvival genes with hippocampal cell death after traumatic brain injury. Sci Rep 7:6645. https://doi.org/10.1038/s41598-017-06341-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bernard R, Kerman IA, Meng F, Evans SJ, Amrein I, Jones EG, Bunney WE, Akil H, Watson SJ, Thompson RC (2009) Gene expression profiling of neurochemically defined regions of the human brain by in situ hybridization-guided laser capture microdissection. J Neurosci Methods 178:46–54

    Article  PubMed  CAS  Google Scholar 

  57. Doppenberg EM, Choi SC, Bullock R (2004) Clinical trials in traumatic brain injury: lessons for the future. J Neurosurg Anesthesiol 16:87–94

    Article  PubMed  Google Scholar 

  58. Schouten JW (2007) Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 13:134–142

    Article  PubMed  Google Scholar 

  59. Bota M, Dong HW, Swanson LW (2003) From gene networks to brain networks. Nat Neurosci 6:795–799

    Article  PubMed  CAS  Google Scholar 

  60. Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127. https://doi.org/10.1186/gb-2008-9-8-r127. gb-2008-9-8-r127 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S, Navab R (2014) MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One 9:e103698. https://doi.org/10.1371/journal.pone.0103698. PONE-D-13-40415 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF (2008) Pharmacology of traumatic brain injury—where is the “golden bullet”? Mol Med 14:731–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Moller T, Wes PD, Sogayar MC, Laman JD, den DW, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie SKN, Eggen BJL (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20:1162–1171. https://doi.org/10.1038/nn.4597. nn.4597 [pii]

    Article  PubMed  CAS  Google Scholar 

  65. Livak KJ, Wills QF, Tipping AJ, Datta K, Mittal R, Goldson AJ, Sexton DW, Holmes CC (2012) Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 59:71–79

    Article  PubMed  CAS  Google Scholar 

  66. Caeyenberghs K, Leemans A, Leunissen I, Gooijers J, Michiels K, Sunaert S, Swinnen SP (2014) Altered structural networks and executive deficits in traumatic brain injury patients. Brain Struct Funct 219:193–209. https://doi.org/10.1007/s00429-012-0494-2

    Article  PubMed  CAS  Google Scholar 

  67. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE (2012) Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology 37:1975–1985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Karatsoreos IN (2012) Effects of circadian disruption on mental and physical health. Curr Neurol Neurosci Rep 12(2):218–225. https://doi.org/10.1007/s11910-012-0252-0

    Article  PubMed  Google Scholar 

  69. Wang WZ, Oeschger FM, Lee S, Molnar Z (2009) High quality RNA from multiple brain regions simultaneously acquired by laser capture microdissection. BMC Mol Biol 10:69. https://doi.org/10.1186/1471-2199-10-69. 1471-2199-10-69 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen L. Hellmich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weisz, H.A., Boone, D.R., Sell, S.L., Hellmich, H.L. (2018). Laser Capture Microdissection of Single Cells, Cell Populations, and Brain Regions Affected by Traumatic Brain Injury. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics