Skip to main content

Pre-Procedural Considerations and Post-Procedural Care for Animal Models with Experimental Traumatic Brain Injury

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

  • 603 Accesses

Abstract

In vivo models of traumatic brain injury (TBI) are powerful means of examining the progression and sequelae after neurologic injury at the cellular and molecular level. Drafting the animal use protocol, acquiring animals, and preparing the animals for the procedure must be considered in advance of the start of the actual study. The provision of supportive care in the post-procedure period cannot be overlooked as a critical component of experimental success. This chapter introduces these topics to the researcher studying TBI in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berkner J, Mannix R, Qiu J (2016) Clinical traumatic brain injury in the preclinical setting. Methods Mol Biol 1462:11–28. https://doi.org/10.1007/978-1-4939-3816-2_2

    Article  PubMed  CAS  Google Scholar 

  2. Animal Welfare Act as Amended (2016) 7 USC §2131-2159. vol 7 USC

    Google Scholar 

  3. Office of Laboratory Animal Welfare (2015) Public health service policy on humane care and use of laboratory animals. National Institutes of Health, Bethesda

    Google Scholar 

  4. Institue of Laboratory Animal Research (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies, Washington. https://doi.org/10.17226/12910

    Book  Google Scholar 

  5. Institue of Laboratory Animal Research (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. National Academies, Washington

    Google Scholar 

  6. Office of Laboratory Animal Welfare (2002) Institutional animal care and use guidebook, 2nd edn. National Institutes of Health, Bethesda

    Google Scholar 

  7. Brown MJ, Winnicker C (2015) Animal Welfare. In: Fox JG, Anderson LC, Otto GM, Pritchett-Corning KR, Whary MT (eds) Laboratory animal medicine, 3rd edn. Academic, Boston, pp 1653–1672. https://doi.org/10.1016/B978-0-12-409527-4.00039-0

    Chapter  Google Scholar 

  8. Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research--issues to consider for rodents and rabbits. ILAR J 47(4):283–293

    Article  PubMed  CAS  Google Scholar 

  9. Di G, He L (2013) Behavioral and plasma monoamine responses to high-speed railway noise stress in mice. Noise Health 15(65):217–223. https://doi.org/10.4103/1463-1741.113506

    Article  PubMed  Google Scholar 

  10. Ishitake T (1990) Hemodynamic changes in skin microcirculation induced by vibration stress in the conscious rabbit. Kurume Med J 37(4):235–245

    Article  PubMed  CAS  Google Scholar 

  11. Toth LA, Trammell RA, Ilsley-Woods M (2015) Interactions between housing density and ambient temperature in the cage environment: effects on mouse physiology and behavior. J Am Assoc Lab Anim Sci 54(6):708–717

    PubMed  PubMed Central  Google Scholar 

  12. Tzamkiozis T, Stoeger T, Cheung K, Ntziachristos L, Sioutas C, Samaras Z (2010) Monitoring the inflammatory potential of exhaust particles from passenger cars in mice. Inhal Toxicol 22(Suppl 2):59–69. https://doi.org/10.3109/08958378.2010.519408

    Article  PubMed  CAS  Google Scholar 

  13. Duke JL, Zammit TG, Lawson DM (2001) The effects of routine cage-changing on cardiovascular and behavioral parameters in male Sprague-Dawley rats. Contemp Top Lab Anim Sci 40(1):17–20

    PubMed  CAS  Google Scholar 

  14. Febinger HY, George A, Priestley J, Toth LA, Opp MR (2014) Effects of housing condition and cage change on characteristics of sleep in mice. J Am Assoc Lab Anim Sci 53(1):29–37

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Kamnaksh A, Kovesdi E, Kwon SK, Wingo D, Ahmed F, Grunberg NE, Long J, Agoston DV (2011) Factors affecting blast traumatic brain injury. J Neurotrauma 28(10):2145–2153. https://doi.org/10.1089/neu.2011.1983

    Article  PubMed  Google Scholar 

  16. Capdevila S, Giral M, Ruiz de la Torre JL, Russell RJ, Kramer K (2007) Acclimatization of rats after ground transportation to a new animal facility. Lab Anim 41(2):255–261. https://doi.org/10.1258/002367707780378096

    Article  PubMed  CAS  Google Scholar 

  17. Swindle MM, Sistino JJ (2015) Anesthesia, analgesia, and perioperative care. In: Swindle MM, Smith AC (eds) Swine in the laboratory: surgery anesthesia, imaging, and experimental techniques, 3rd edn. CRC, Boca Raton, pp 39–88. https://doi.org/10.1201/b19430-31201/b19430-3

    Chapter  Google Scholar 

  18. Magden ER, Mansfield KG, Simmons JH, Abee CR (2015) Nonhuman primates. In: Fox JG, Anderson LC, Otto GM, Pritchett-Corning KR, Whary MT (eds) Laboratory animal medicine, 3rd edn. Academic, Boston, pp 771–930. https://doi.org/10.1016/B978-0-12-409527-4.00017-1

    Chapter  Google Scholar 

  19. Smith AC, Swindle MM (2006) Preparation of swine for the laboratory. ILAR J 47(4):358–363

    Article  PubMed  CAS  Google Scholar 

  20. Berry ML, Linder CC (2007) Breeding systems: considerations, genetic fundamentals, genetic background, and strain types. In: Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL (eds) The mouse in biomedical research, vol 1, 2nd edn. Academic, Burlington, pp 53–78. https://doi.org/10.1016/B978-012369454-6/50016-9

    Chapter  Google Scholar 

  21. Osier N, Dixon CE (2016) The controlled cortical impact model of experimental brain trauma: overview, research applications, and protocol. Methods Mol Biol 1462:177–192. https://doi.org/10.1007/978-1-4939-3816-2_11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Done S (1995) Diagnosis of central nervous system disorders in the pig. In Pract 17(7):318–327. https://doi.org/10.1136/inpract.17.7.318

    Article  Google Scholar 

  23. Gelberg HB (2010) Neurologic disease in a pig. Vet Pathol 47(3):576–578. https://doi.org/10.1177/0300985810367894

    Article  PubMed  CAS  Google Scholar 

  24. Philips BH, Loria KO, Sirivelu MP, Jaber SM, Allen-Worthington KH, Veeder CL, Brice AK (2016) Pathology in practice. J Am Vet Med Assoc 249(7):755–757. https://doi.org/10.2460/javma.249.7.755

    Article  PubMed  Google Scholar 

  25. Friess SH, Ichord RN, Owens K, Ralston J, Rizol R, Overall KL, Smith C, Helfaer MA, Margulies SS (2007) Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp Neurol 204(1):234–243. https://doi.org/10.1016/j.expneurol.2006.10.010

    Article  PubMed  Google Scholar 

  26. Sullivan S, Friess SH, Ralston J, Smith C, Propert KJ, Rapp PE, Margulies SS (2013) Improved behavior, motor, and cognition assessments in neonatal piglets. J Neurotrauma 30(20):1770–1779. https://doi.org/10.1089/neu.2013.2913

    Article  PubMed  PubMed Central  Google Scholar 

  27. Davies JA, Fransson BA, Davis AM, Gilbertsen AM, Gay JM (2015) Incidence of and risk factors for postoperative regurgitation and vomiting in dogs: 244 cases (2000-2012). J Am Vet Med Assoc 246(3):327–335. https://doi.org/10.2460/javma.246.3.327

    Article  PubMed  Google Scholar 

  28. Horn CC, Kimball BA, Wang H, Kaus J, Dienel S, Nagy A, Gathright GR, Yates BJ, Andrews PL (2013) Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS One 8(4):e60537. https://doi.org/10.1371/journal.pone.0060537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mishra RK, Munivenkatappa A, Prathyusha V, Shukla DP, Devi BI (2017) Clinical predictors of abnormal head computed tomography scan in patients who are conscious after head injury. J Neurosci Rural Pract 8(1):64–67. https://doi.org/10.4103/0976-3147.193538

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goodwin RF (1957) The relationship between the concentration of blood sugar and some vital body functions in the new-born pig. J Physiol 136(1):208–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Swiatek KR, Kipnis DM, Mason G, Chao KL, Cornblath M (1968) Starvation hypoglycemia in newborn pigs. Am J Phys 214(2):400–405

    CAS  Google Scholar 

  32. Chang YS, Park WS, Ko SY, Kang MJ, Han JM, Lee M, Choi J (1999) Effects of fasting and insulin-induced hypoglycemia on brain cell membrane function and energy metabolism during hypoxia-ischemia in newborn piglets. Brain Res 844(1–2):135–142

    Article  PubMed  CAS  Google Scholar 

  33. Prins ML, Hovda DA (2009) The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. J Neurotrauma 26(7):1083–1093. https://doi.org/10.1089/neu.2008.0769

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yager JY, Heitjan DF, Towfighi J, Vannucci RC (1992) Effect of insulin-induced and fasting hypoglycemia on perinatal hypoxic-ischemic brain damage. Pediatr Res 31(2):138–142. https://doi.org/10.1203/00006450-199202000-00009

    Article  PubMed  CAS  Google Scholar 

  35. Prins ML (2008) Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab 28(1):1–16. https://doi.org/10.1038/sj.jcbfm.9600543

    Article  CAS  PubMed  Google Scholar 

  36. Prins ML, Matsumoto JH (2014) The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 55(12):2450–2457. https://doi.org/10.1194/jlr.R046706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. White H, Venkatesh B (2011) Clinical review: ketones and brain injury. Crit Care 15(2):219. https://doi.org/10.1186/cc10020

    Article  PubMed  PubMed Central  Google Scholar 

  38. White H, Venkatesh K, Venkatesh B (2017) Systematic review of the use of ketones in the management of acute and chronic neurological disorders. J Neurol Neurosci 8:2. https://doi.org/10.21767/2171-6625.1000188

    Article  Google Scholar 

  39. Houpt TR, Yang H (1995) Water deprivation, plasma osmolality, blood volume, and thirst in young pigs. Physiol Behav 57(1):49–54

    Article  CAS  PubMed  Google Scholar 

  40. Smith AJ, Clutton RE, Lilley E, Hansen KEA, Brattelid T (2017) PREPARE: guidelines for planning animal research and testing. Lab Anim 52:135–141. https://doi.org/10.1177/0023677217724823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jaber SM, Hankenson FC, Heng K, McKinstry-Wu A, Kelz MB, Marx JO (2014) Dose regimens, variability, and complications associated with using repeat-bolus dosing to extend a surgical plane of anesthesia in laboratory mice. J Am Assoc Lab Anim Sci 53(6):684–691

    PubMed  PubMed Central  Google Scholar 

  42. Bruins B, Kilbaugh TJ, Margulies SS, Friess SH (2013) The anesthetic effects on vasopressor modulation of cerebral blood flow in an immature swine model. Anesth Analg 116(4):838–844. https://doi.org/10.1213/ANE.0b013e3182860fe7

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clevenger AC, Kilbaugh T, Margulies SS (2015) Carotid artery blood flow decreases after rapid head rotation in piglets. J Neurotrauma 32(2):120–126. https://doi.org/10.1089/neu.2014.3570

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baker NJ, Schofield JC, Caswell MD, McLellan AD (2011) Effects of early atipamezole reversal of medetomidine-ketamine anesthesia in mice. J Am Assoc Lab Anim Sci 50(6):916–920

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Izer JM, Whitcomb TL, Wilson RP (2014) Atipamezole reverses ketamine-dexmedetomidine anesthesia without altering the antinociceptive effects of butorphanol and buprenorphine in female C57BL/6J mice. J Am Assoc Lab Anim Sci 53(6):675–683

    PubMed  PubMed Central  Google Scholar 

  46. Janssen CF, Maiello P, Wright MJ Jr, Kracinovsky KB, Newsome JT (2017) Comparison of atipamezole with yohimbine for antagonism of xylazine in mice anesthetized with ketamine and xylazine. J Am Assoc Lab Anim Sci 56(2):142–147

    PubMed  PubMed Central  Google Scholar 

  47. Hoogstraten-Miller SL, Brown PA (2008) Techniques in aseptic rodent surgery. Curr Protoc Immunol 82:1.12.1–1.12.14. https://doi.org/10.1002/0471142735.im0112s82

    Article  Google Scholar 

  48. Caro AC, Hankenson FC, Marx JO (2013) Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters. J Am Assoc Lab Anim Sci 52(5):577–583

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Peterson K, Carson S, Carney N (2008) Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma 25(1):62–71. https://doi.org/10.1089/neu.2007.0424

    Article  PubMed  Google Scholar 

  50. Thompson HJ, Tkacs NC, Saatman KE, Raghupathi R, McIntosh TK (2003) Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiol Dis 12(3):163–173

    Article  PubMed  Google Scholar 

  51. Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH (2016) A porcine model of traumatic brain injury via head rotational acceleration. Methods Mol Biol 1462:289–324. https://doi.org/10.1007/978-1-4939-3816-2_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hellewell SC, Ziebell JM, Lifshitz J, Morganti-Kossmann MC (2016) Impact acceleration model of diffuse traumatic brain injury. Methods Mol Biol 1462:253–266. https://doi.org/10.1007/978-1-4939-3816-2_15

    Article  PubMed  CAS  Google Scholar 

  53. Glass TF, Fabian MJ, Schweitzer JB, Weinberg JA, Proctor KG (1999) Secondary neurologic injury resulting from nonhypotensive hemorrhage combined with mild traumatic brain injury. J Neurotrauma 16(9):771–782. https://doi.org/10.1089/neu.1999.16.771

    Article  PubMed  CAS  Google Scholar 

  54. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA (2005) Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med 230(10):777–784

    Article  CAS  Google Scholar 

  55. Tanaka T, Nabatame H, Tanifuji Y (2005) Insulin secretion and glucose utilization are impaired under general anesthesia with sevoflurane as well as isoflurane in a concentration-independent manner. J Anesth 19(4):277–281. https://doi.org/10.1007/s00540-005-0341-1

    Article  PubMed  Google Scholar 

  56. Syring RS, Otto CM, Drobatz KJ (2001) Hyperglycemia in dogs and cats with head trauma: 122 cases (1997-1999). J Am Vet Med Assoc 218(7):1124–1129

    Article  PubMed  CAS  Google Scholar 

  57. Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, Bowser R, Freeman MR, Brown RH Jr (2016) Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain 139(Pt 4):1094–1105. https://doi.org/10.1093/brain/aww001

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nilsson P, Ronne-Engstrom E, Flink R, Ungerstedt U, Carlson H, Hillered L (1994) Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Res 637(1–2):227–232

    Article  PubMed  CAS  Google Scholar 

  59. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697. https://doi.org/10.1016/j.neuroscience.2006.03.012

    Article  PubMed  CAS  Google Scholar 

  60. Kanitz E, Puppe B, Tuchscherer M, Heberer M, Viergutz T, Tuchscherer A (2009) A single exposure to social isolation in domestic piglets activates behavioural arousal, neuroendocrine stress hormones, and stress-related gene expression in the brain. Physiol Behav 98(1–2):176–185. https://doi.org/10.1016/j.physbeh.2009.05.007

    Article  PubMed  CAS  Google Scholar 

  61. Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J (2013) Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim 42(8):286–291. https://doi.org/10.1038/laban.257

    Article  Google Scholar 

  62. Browne KD, Iwata A, Putt ME, Smith DH (2006) Chronic ibuprofen administration worsens cognitive outcome following traumatic brain injury in rats. Exp Neurol 201(2):301–307. https://doi.org/10.1016/j.expneurol.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  63. Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR (2012) The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 29(2):375–384. https://doi.org/10.1089/neu.2010.1673

    Article  PubMed  Google Scholar 

  64. Bolton Hall AN, Joseph B, Brelsfoard JM, Saatman KE (2016) Repeated closed head injury in mice results in sustained motor and memory deficits and chronic cellular changes. PLoS One 11(7):e0159442. https://doi.org/10.1371/journal.pone.0159442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, Risling M, Svensson M, Morganti-Kossmann MC, Bellander BM (2016) Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible Factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol 7:23. https://doi.org/10.3389/fneur.2016.00023

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cheng JS, Craft R, Yu GQ, Ho K, Wang X, Mohan G, Mangnitsky S, Ponnusamy R, Mucke L (2014) Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS One 9(12):e115765. https://doi.org/10.1371/journal.pone.0115765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Margulies SS, Kilbaugh T, Sullivan S, Smith C, Propert K, Byro M, Saliga K, Costine BA, Duhaime AC (2015) Establishing a clinically relevant large animal model platform for TBI therapy development: using Cyclosporin A as a case study. Brain Pathol 25(3):289–303. https://doi.org/10.1111/bpa.12247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Friess SH, Naim MY, Kilbaugh TJ, Ralston J, Margulies SS (2012) Premedication with meloxicam exacerbates intracranial haemorrhage in an immature swine model of non-impact inertial head injury. Lab Anim 46(2):164–166. https://doi.org/10.1258/la.2011.011084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Alderson P, Roberts I (1997) Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials. BMJ 314(7098):1855–1859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sande A, West C (2010) Traumatic brain injury: a review of pathophysiology and management. J Vet Emerg Crit Care 20(2):177–190. https://doi.org/10.1111/j.1476-4431.2010.00527.x

    Article  Google Scholar 

  71. Crumrine RC, Marder VJ, Taylor GM, Lamanna JC, Tsipis CP, Scuderi P, Petteway SR Jr, Arora V (2011) Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Exp Transl Stroke Med 3(1):10. https://doi.org/10.1186/2040-7378-3-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kao CH, ChangLai SP, Chieng PU, Yen TC (1998) Gastric emptying in head-injured patients. Am J Gastroenterol 93(7):1108–1112. https://doi.org/10.1111/j.1572-0241.1998.00338.x

    Article  PubMed  CAS  Google Scholar 

  73. Taylor SJ, Fettes SB, Jewkes C, Nelson RJ (1999) Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med 27(11):2525–2531

    Article  PubMed  CAS  Google Scholar 

  74. Leitgeb J, Mauritz W, Brazinova A, Majdan M, Wilbacher I (2013) Impact of concomitant injuries on outcomes after traumatic brain injury. Arch Orthop Trauma Surg 133(5):659–668. https://doi.org/10.1007/s00402-013-1710-0

    Article  PubMed  PubMed Central  Google Scholar 

  75. McDonald SJ, Sun M, Agoston DV, Shultz SR (2016) The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation 13(1):90. https://doi.org/10.1186/s12974-016-0555-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brady RD, Grills BL, Church JE, Walsh NC, McDonald AC, Agoston DV, Sun M, O'Brien TJ, Shultz SR, McDonald SJ (2016) Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep 6:34491. https://doi.org/10.1038/srep34491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tsitsilonis S, Seemann R, Misch M, Wichlas F, Haas NP, Schmidt-Bleek K, Kleber C, Schaser KD (2015) The effect of traumatic brain injury on bone healing: an experimental study in a novel in vivo animal model. Injury 46(4):661–665. https://doi.org/10.1016/j.injury.2015.01.044

    Article  PubMed  Google Scholar 

  78. Mayer J (2007) Use of behavior analysis to recognize pain in small mammals. Lab Anim (N Y) 36(6):43–48

    Article  Google Scholar 

  79. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AM, Ferrari MD, Craig KD, Mogil JS (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7(6):447–449. https://doi.org/10.1038/nmeth.1455

    Article  PubMed  CAS  Google Scholar 

  80. Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, Mapplebeck JC, Wei P, Zhan S, Zhang S, McDougall JJ, King OD, Mogil JS (2011) The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 7:55. https://doi.org/10.1186/1744-8069-7-55

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stasiak KL, Maul D, French E, Hellyer PW, VandeWoude S (2003) Species-specific assessment of pain in laboratory animals. Contemp Top Lab Anim Sci 42(4):13–20

    PubMed  CAS  Google Scholar 

  82. Viscardi AV, Hunniford M, Lawlis P, Leach M, Turner PV (2017) Development of a piglet grimace scale to evaluate piglet pain using facial expressions following castration and tail docking: a pilot study. Front Vet Sci 4:51. https://doi.org/10.3389/fvets.2017.00051

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mayer CL, Huber BR, Peskind E (2013) Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache 53(9):1523–1530. https://doi.org/10.1111/head.12173

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2):128–142. https://doi.org/10.1038/nrn3407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hickman DL, Swan M (2010) Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. J Am Assoc Lab Anim Sci 49(2):155–159

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Ullman-Culleré MH, Foltz CJ (1999) Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Anim Sci 49(3):319–323

    PubMed  Google Scholar 

  87. Morton DB, Griffiths PH (1985) Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec 116(16):431–436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Robinson, M.A., Jaber, S.M., Piotrowski, S.L., Gomez, T.H. (2018). Pre-Procedural Considerations and Post-Procedural Care for Animal Models with Experimental Traumatic Brain Injury. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics