Skip to main content

Multiple Testing Tool to Detect Combinatorial Effects in Biology

  • Protocol
  • First Online:
Book cover Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1807))

Abstract

Detecting combinatorial effects is important to various research areas, including biology, genomics, and medical sciences. However, this task was not only computationally nontrivial but also extremely difficult to achieve because of the necessity of a multiple testing procedure; hence few methods can comprehensively analyze high-order combinations. Recently, Limitless Arity Multiple-testing Procedure (LAMP) was introduced, allowing us to enumerate statistically significant combinations from a given dataset. This chapter provides instructions for LAMP using simple examples of combinatorial transcription factor regulation discovery and visualization of the results. This chapter also introduces LAMPLINK, which is extended software of LAMP. LAMPLINK can handle genetic dataset to detect statistically significant interactions among multiple SNPs from a genome-wide association study (GWAS) dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baudry A, Heim MA, Dubreucq B et al (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  2. Schlesinger J, Schueler M, Grunert M et al (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 7:e1001313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  4. Phillips PC (2008) Epistasis--the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubbl del R Ist Super di Sci Econ e Commer di Firenze 8:3–62

    Google Scholar 

  7. Terada A, Okada-hatakeyama M, Tsuda K, Sese J (2013) Statistical significance of combinatorial regulations. Proc Natl Acad Sci U S A 110:12996–13001   

    Article  PubMed  PubMed Central  Google Scholar 

  8. Terada A, Tsuda K, Sese J (2013) Fast Westfall-Young permutation procedure for combinatorial regulation discovery. In: 2013 IEEE International Conference on Bioinformatics and Biomedicine. pp 153–158

    Google Scholar 

  9. Sugiyama M, López FL, Kasenburg N, Borgwardt KM (2015) Significant subgraph mining with multiple testing correction. In: 2015 SIAM International Conference on Data Mining. pp 37–45

    Google Scholar 

  10. Llinares-López F, Sugiyama M, Papaxanthos L, Borgwardt K (2015) Fast and memory-efficient significant pattern mining via permutation testing. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 725–734

    Google Scholar 

  11. Terada A, Yamada R, Tsuda K, Sese J (2016) LAMPLINK: detection of statistically significant SNP combinations from GWAS data. Bioinformatics 32:3513–3515

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Uno T, Asai T, Uchida Y, Arimura H (2003) LCM: an efficient algorithm for enumerating frequent closed item sets. In: Workshop on Frequent Itemset Mining Implementations (FIMI’03)

    Google Scholar 

  13. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aika Terada or Koji Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Terada, A., Tsuda, K. (2018). Multiple Testing Tool to Detect Combinatorial Effects in Biology. In: Mamitsuka, H. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 1807. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8561-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8561-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8560-9

  • Online ISBN: 978-1-4939-8561-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics