Skip to main content

DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank

  • Protocol
  • First Online:
Book cover Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1807))

Abstract

Identifying drug-target interactions is crucial for the success of drug discovery. Approaches based on machine learning for this problem can be divided into two types: feature-based and similarity-based methods. By utilizing the “Learning to rank” framework, we propose a new method, DrugE-Rank, to combine these two different types of methods for improving the prediction performance of new candidate drugs and targets. DrugE-Rank is available at http://datamining-iip.fudan.edu.cn/service/DrugE-Rank/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403):361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nunez S, Venhorst J, Kruse CG (2012) Target-drug interactions: first principles and their application to drug discovery. Drug Discov Today 17:10–22

    Article  CAS  PubMed  Google Scholar 

  4. Ding H, Takigawa I, Mamitsuka H, Zhu S (2014) Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform 15(5):734–747

    Article  PubMed  Google Scholar 

  5. Zheng X, Ding H, Mamitsuka H, Zhu S (2013) Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1025–1033

    Google Scholar 

  6. Takigawa I, Mamitsuka H (2013) Graph mining: procedure, application to drug discovery and recent advance. Drug Discov Today 18(1–2):50–57

    Article  CAS  PubMed  Google Scholar 

  7. Liu T (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3(3):225–331

    Article  CAS  Google Scholar 

  8. Li H (2011) A short introduction to learning to rank. IEICE Transactions 94-D(10):1854–1862

    Article  Google Scholar 

  9. Yuan Q, Gao J, Wu D et al (2016) DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32(12):i18–i27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V et al (2014) Drugbank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091–D1097

    Article  CAS  Google Scholar 

  11. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18):2397–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van LT, Marchiori E (2013) Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8(6):e66952

    Article  CAS  Google Scholar 

  13. Van LT, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21):3036–3043

    Article  CAS  Google Scholar 

  14. Xia Z, Zhou X, Sun Y, Wu L (2009) Semi-supervised drug-protein interaction prediction from heterogeneous spaces. In: The Third International Symposium on Optimization and Systems Biology, vol 11. pp 123–131

    Google Scholar 

  15. Rao H, Zhu F, Yang G, Li Z, Chen Y (2011) Update of profeat: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 39(Suppl 2):W385–W390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by National Natural Science Foundation of China (Grant Nos: 61572139), MEXT KAKENHI #16H02868, and FiDiPro by Tekes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanfeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deng, J., Yuan, Q., Mamitsuka, H., Zhu, S. (2018). DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank. In: Mamitsuka, H. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 1807. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8561-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8561-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8560-9

  • Online ISBN: 978-1-4939-8561-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics