Skip to main content

Large-Scale Generation of Recombinant Granulin Peptides in E. coli

  • Protocol
  • First Online:
Progranulin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1806))

Abstract

Generating milligram quantities of correctly folded granulin molecules with properly formed disulfide bonds and biologically relevant activities may represent a considerable challenge. Here I describe a protocol for obtaining well-folded human granulins A, C, and F by expressing them as thioredoxin fusion proteins in Origami (DE3) Escherichia coli cells promoting disulfide bond formation in the cytoplasm environment. The thioredoxin tag is removed by proteolytic cleavage with enterokinase and granulins which are purified by reversed-phase HPLC. Well-folded disulfide species display lower retention time than misfolded species and therefore can be readily purified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateman A, Bennett HP (1998) Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158:145–151

    Article  CAS  PubMed  Google Scholar 

  2. Bateman A, Bennett HP (2009) The granulin gene family: from cancer to dementia. BioEssays 31:1245–1254

    Article  CAS  PubMed  Google Scholar 

  3. Benham CJ, Saleet Jafri M (1993) Disulfide bonding patterns and protein topologies. Protein Sci 2:41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sevier CS, Kaiser CA (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3:836–847

    Article  CAS  PubMed  Google Scholar 

  5. Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556

    Article  CAS  PubMed  Google Scholar 

  6. Tolkatchev D, Malik S, Vinogradova A et al (2008) Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 17:711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakamoto H, Bardwell JC (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694:111–119

    Article  CAS  PubMed  Google Scholar 

  8. Prinz WA, Åslund F, Holmgren A et al (1997) The role of the Thioredoxin and Glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  PubMed  Google Scholar 

  9. Bessette PH, Åslund F, Beckwith J et al (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Puigbo P, Guzman E, Romeu A et al (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    Article  PubMed  PubMed Central  Google Scholar 

  11. Durfee T, Nelson R, Baldwin S et al (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skala W, Goettig P, Brandstetter H (2013) Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer's toolbox. J Biotechnol 168:421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stark GR, Stein WH, Moore S (1960) Reactions of the cyanate present in aqueous urea with amino acids and proteins. J Biol Chem 235:3177–3181

    Google Scholar 

  14. Shaw WH, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Tolkatchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tolkatchev, D. (2018). Large-Scale Generation of Recombinant Granulin Peptides in E. coli. In: Bateman, A., Bennett, H., Cheung, S. (eds) Progranulin. Methods in Molecular Biology, vol 1806. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8559-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8559-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8557-9

  • Online ISBN: 978-1-4939-8559-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics