Skip to main content

Multicolor Tracking of Molecular Motors at Nanometer Resolution

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

  • 1593 Accesses

Abstract

Molecular motors move processively along cytoskeletal filaments through stepping of their catalytic head domains. Observation of the stepping movement of the heads reveals the mechanism of motor processivity and how they coordinate the cycles of the catalytic heads during processive motility. This chapter will discuss recent developments in simultaneous observation of the stepping motions of the two heads using multicolor single particle tracking microscopy.

Techniques Presented: FIONA, multicolor tracking/image registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  CAS  PubMed  Google Scholar 

  2. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102:1419–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88:L30–L32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nishikawa S, Arimoto I, Ikezaki K, Sugawa M, Ueno H, Komori T, Iwane AH, Yanagida T (2010) Switch between large hand-over-hand and small inchworm-like steps in Myosin VI. Cell 142:879–888

    Article  CAS  PubMed  Google Scholar 

  6. DeWitt MA, Chang AY, Combs PA, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335:221–225

    Article  CAS  PubMed  Google Scholar 

  7. Cleary FB, Dewitt MA, Bilyard T, Htet ZM, Belyy V, Chan DD, Chang AY, Yildiz A (2014) Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat Commun 5:4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiu W, Derr ND, Goodman BS, Villa E, Wu D, Shih W, Reck-Peterson SL (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Can S, Dewitt MA, Yildiz A (2014) Bidirectional helical motility of cytoplasmic dynein around microtubules. elife 3:e03205. https://doi.org/10.7554/eLife.03205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gibbons IR, Fronk E (1979) A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J Biol Chem 254:187–196

    PubMed  CAS  Google Scholar 

  11. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization- depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  CAS  PubMed  Google Scholar 

  12. MoberlyChan WJ, Adams DP, Aziz MJ, Hobler G, Schenkel T (2007) Fundamentals of focused ion beam nanostructural processing: below, at, and above the surface. MRS Bull 32:424–432

    Article  CAS  Google Scholar 

  13. Kalafut B, Visscher K (2008) An objective, model-independent method for detection of non-uniform steps in noisy signals. Comput Phys Commun 179:716–723

    Article  CAS  Google Scholar 

  14. Yu I, Garnham CP, Roll-Mecak A (2015) Writing and reading the tubulin code. J Biol Chem 290:17163–17172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NIH (GM094522) and the NSF (MCB-1617028) to AY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yildiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wichner, S.M., Yildiz, A. (2018). Multicolor Tracking of Molecular Motors at Nanometer Resolution. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics