Skip to main content

Engineering Synthetic Myosin Filaments Using DNA Nanotubes

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Throughout the cell, motor proteins work together to drive numerous molecular processes and functions. For example, ensembles of myosin motors collectively transport vesicles and organelles, maintain membrane homeostasis, and drive muscle contraction. Studying these motors in groups has become increasingly important with work demonstrating the emergence of ensemble behavior distinct from individual motor behavior. One powerful technique that has been used in the last decade is DNA nanotechnology, which provides precise control over spacing and organization of patterned motor proteins. Until recently, however, most studies combining DNA nanostructures and molecular motors have been confined to discrete DNA structures with limited attachment points for motor proteins. In this chapter, we describe a new approach for making synthetic motor filaments using DNA nanotubes. We present methods for preparing myosin VI-labeled nanotubes and testing these nanotubes using a general in vitro motility setup. Overall, these nanotubes can easily be used to study other large ensembles of molecular motors, such as muscle myosin or ciliary dynein, both proteins that work in large motor ensembles to drive key cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker JE, Brosseau C, Joel PB, Warshaw DM (2002) The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules. Biophys J 82(4):2134–2147. https://doi.org/10.1016/S0006-3495(02)75560-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL (2012) Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338(6107):662–665. https://doi.org/10.1126/science.1226734

    Article  PubMed  CAS  Google Scholar 

  3. Hariadi RF, Cale M, Sivaramakrishnan S (2014) Myosin lever arm directs collective motion on cellular actin network. Proc Natl Acad Sci U S A 111(11):4091–4096. https://doi.org/10.1073/pnas.1315923111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hariadi RF, Sommese RF, Sivaramakrishnan S (2015) Tuning myosin-driven sorting on cellular actin networks. eLife 4. doi:https://doi.org/10.7554/eLife.05472

  5. Walcott S, Warshaw DM, Debold EP (2012) Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements. Biophys J 103(3):501–510. https://doi.org/10.1016/j.bpj.2012.06.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hariadi RF, Sommese RF, Adhikari AS, Taylor RE, Sutton S, Spudich JA, Sivaramakrishnan S (2015) Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments. Nat Nanotechnol 10(8):696–700. https://doi.org/10.1038/nnano.2015.132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yin P, Hariadi RF, Sahu S, Choi HM, Park SH, Labean TH, Reif JH (2008) Programming DNA tube circumferences. Science 321(5890):824–826. https://doi.org/10.1126/science.1157312

    Article  PubMed  CAS  Google Scholar 

  8. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6):921–933. https://doi.org/10.1083/jcb.200908067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Huxley HE (1969) The mechanism of muscular contraction. Science 164(3886):1356–1365

    Article  CAS  PubMed  Google Scholar 

  10. Kron SJ, Toyoshima YY, Uyeda TQ, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196:399–416

    Article  CAS  PubMed  Google Scholar 

  11. Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA (1997) Myosin heavy chain gene expression in human heart failure. J Clin Invest 100(9):2362–2370. https://doi.org/10.1172/JCI119776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Weith A, Sadayappan S, Gulick J, Previs MJ, Vanburen P, Robbins J, Warshaw DM (2012) Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain. J Mol Cell Cardiol 52(1):219–227. https://doi.org/10.1016/j.yjmcc.2011.09.019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association Scientist Development Grant (13SDG14270009) and the NIH (1DP2 CA186752-01 and 1-R01-GM-105646-01-A1) to SS. RFS is a Life Sciences Research Foundation postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivaraj Sivaramakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sommese, R.F., Sivaramakrishnan, S. (2018). Engineering Synthetic Myosin Filaments Using DNA Nanotubes. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics