Skip to main content

The Bacterial Flagellar Rotary Motor in Action

  • Protocol
  • First Online:
Book cover Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

The bacterial flagellar motor is one of the few rotary motors in nature. Only ∼50 nm in diameter, this transmembrane, ion-driven nanomachine rotates a semirigid helical flagellum at speeds of up to 1300 rps. It is composed of at least 13 different proteins, in different copy numbers, resulting from the coordinated, sequential expression of more than 40 genes. Structural studies have revealed a great deal of information about the structure of the motor, but the in vivo activity has been more elusive. Using a multidisciplinary approach combining molecular biology with single molecule fluorescence microscopy and novel data analysis recent work has obtained quantitative data on the stoichiometry, dynamics, and turnover of components of functioning motors in vivo under physiological conditions. This has shown that it is not a stable rotary machine, but that its structure is highly dynamic and undergoes adaptive remodeling in response to different intracellular and extracellular signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  PubMed  Google Scholar 

  2. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  3. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 107:11347–11351

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tipping MJ, Steel BC, Delalez NJ, Berry RM, Armitage JP (2013) Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol Microbiol 87:338–347

    Article  CAS  PubMed  Google Scholar 

  5. Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP (2013) Load-dependent assembly of the bacterial flagellar motor. MBio 4:e00551–e00513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delalez NJ, Berry RM, Armitage JP (2014) Stoichiometry and turnover of the bacterial Flagellar switch protein FliN. MBio 5(4):e01216–e01214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuchma SL, Delalez NJ, Filkins LM, a Snavely E, Armitage JP, a O’Toole G (2014) C-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J Bacteriol 197(3):420–430

    Article  CAS  PubMed  Google Scholar 

  8. Paulick A, Delalez NJ, Brenzinger S, Steel BC, Berry RM, Armitage JP, Thormann KM (2015) Dual stator dynamics in the\n Shewanella oneidensis\n MR-1 flagellar motor. Mol Microbiol 96(5):993–1001

    Article  CAS  PubMed  Google Scholar 

  9. Thomas DR, Morgan DG, DeRosier DJ (1999) Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci U S A 96:10134–10139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of salmonella enterica serovar Typhimurium. J Bacteriol 188:7039–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young HS, Dang H, Lai Y, DeRosier DJ, Khan S (2003) Variable symmetry in salmonella typhimurium flagellar motors. Biophys J 84:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 105(40):15376–15381

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plank M, Wadhams GH, Leake MC (2009) Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol 1(10):602–612

    Article  CAS  Google Scholar 

  14. Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP (2015) Composition, formation, and regulation of the cytosolic C-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13(1):e1002039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74

    Article  CAS  PubMed  Google Scholar 

  16. Chung SH, a Kennedy R (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40(1):71–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith P. Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delalez, N.J., Armitage, J.P. (2018). The Bacterial Flagellar Rotary Motor in Action. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics