Skip to main content

DNA Organization and Superesolved Segregation

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

With single-molecule localization microscopy (SMLM) it is possible to reveal the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. SMLM remains technically challenging, and frequently its implementation requires tailored experimental conditions that depend on the complexity of the subcellular structure of interest. Here, we describe two simple, robust, and high-throughput protocols to study molecular motors and machineries responsible for chromosome transport and organization in bacteria using 2D- and 3D-SMLM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  Google Scholar 

  4. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem 47:6172–6176

    Article  CAS  Google Scholar 

  5. Heilemann M, van de Linde S, Mukherjee A et al (2009) Super-resolution imaging with small organic fluorophores. Angew Chem 48:6903–6908

    Article  CAS  Google Scholar 

  6. Ptacin JL, Lee SF, Garner EC et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. English BP, Hauryliuk V, Sanamrad A et al (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 108:E365–E373

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang W, Li G-W, Chen C et al (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Badrinarayanan A, Reyes-Lamothe R, Uphoff S et al (2012) In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338:528–531

    Article  CAS  PubMed  Google Scholar 

  10. Biteen JS, Goley ED, Shapiro L et al (2012) Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. Chemphyschem: a European J Chem Phys Phys Chem 13:1007–1012

    Article  CAS  Google Scholar 

  11. Uphoff S, Reyes-Lamothe R, Garza de Leon F et al (2013) Single-molecule DNA repair in live bacteria. Proc Natl Acad Sci U S A 110:8063–8068

    Article  PubMed  PubMed Central  Google Scholar 

  12. Buss J, Coltharp C, Huang T et al (2013) In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol Microbiol 89:1099–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fiche J-B, Cattoni DI, Diekmann N et al (2013) Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLoS Biol 11:e1001557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holden SJ, Pengo T, Meibom KL et al (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111:4566–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stracy M, Lesterlin C, Garza de Leon F et al (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112:E4390–E4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacq M, Adam V, Bourgeois D et al (2015) Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by Photoactivated localization microscopy. MBio 6:e01108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marbouty M, Le Gall A, Cattoni DI et al (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:1–15

    Article  CAS  Google Scholar 

  18. Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sergé A, Bertaux N, Rigneault H et al (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    Article  CAS  PubMed  Google Scholar 

  20. Wolter S, Löschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041

    Article  CAS  PubMed  Google Scholar 

  21. Cattoni DI, Fiche J-B, Valeri A et al (2013) Super-resolution imaging of bacteria in a microfluidics device. PLoS One 8:e76268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng W (2015) Mechanisms of HCV NS3 helicase monitored by optical tweezers. Methods Mol Biol 1259:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clouvel G, Jasaitis A, Levecq X (2015) 3D dual-color PALM/dSTORM imaging of centrosomal proteins with nanometric resolution using MicAO 3DSR. Imagine Optic, application note.

    Google Scholar 

  24. Jasaitis A, Clouvel G, Levecq X (2015) Deep 3D PALM/STORM imaging MicAO 3DSR - the key to combining depth and highest resolution. Imagine Optic, application note.

    Google Scholar 

  25. Sliusarenko O, Heinritz J, Emonet T et al (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80:612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Andres Cardozo Gizzi for critical reading and helpful comments. This research was supported by funding from the European Research Council under the 7th Framework Program (FP7/2010-2015, ERC grant agreement 260787). We acknowledge support from France-BioImaging (FBI, ANR-10-INSB-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Nollmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cattoni, D.I., Fiche, JB., Le Gall, A., Nollmann, M. (2018). DNA Organization and Superesolved Segregation. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics