Skip to main content

Recombinases and Related Proteins in the Context of Homologous Recombination Analyzed by Molecular Microscopy

  • Protocol
  • First Online:
Book cover Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are powerful tools to study the behavior of various actors in homologous recombination including molecular motors such as recombinases and helicases/translocases. Here we present specific approaches developed in terms of sample preparation and imaging methods to contribute to the understanding of homologous recombination process and its regulation focusing on the interplay between recombinases and other related proteins such as mediators or antirecombinase actors.

Homologous recombination (HR) is a high-fidelity DNA repair pathway since it uses a homologous DNA as template. Recombinases such as RecA in bacteria, RadA in archaea, and Rad51 in eukaryotes are key proteins in the HR pathway: HR is initiated with formation of an ssDNA overhang on which recombinases polymerize and form a dynamic active nucleoprotein filament able to search for homology and to exchange DNA strand in an ATP-dependent manner. We provide practical methods to analyze presynaptic filament formation on ssDNA, its composition and regulation in presence of mediator partners, antirecombinase activity of translocase, and chromatin remodeling events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haber J (2014) Genome Stability: DNA repair and recombination. Taylor & Francis Inc

    Google Scholar 

  2. Bell JC, Kowalczykowski SC (2016) Mechanics and single-molecule interrogation of DNA recombination. Annu Rev Biochem 85:193–226

    Article  CAS  PubMed  Google Scholar 

  3. Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198:795–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, Fontenay GV, Kwon Y, Leung SG, Lu L, Jensen RB et al (2015) Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol Cell 59:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    Article  CAS  PubMed  Google Scholar 

  6. Le Cam E, Delain D, Larquet E, Culard F, Cognet JA (2000) DNA-protein complexes analysed by electron microscopy and cryp-microscopy. In: Travers A, Buckle M (eds) DNA-protein interactions. Oxford University Press, pp 337–350

    Google Scholar 

  7. Dupaigne P, Le Breton C, Fabre F, Giangloff S, Le Cam E, Veaute X (2008) The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol Cell 29:243–254

    Article  CAS  PubMed  Google Scholar 

  8. De Cian A, Praly E, Ding F, Singh V, Lavelle C, Le Cam E, Croquette V, Piétrement O, Bensimon D (2012) ATP-independent cooperative binding of yeast Isw1a to bare and nucleosomal DNA. PLoS One 7:e31845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piétrement O, Pastré D, Fusil S, Jeusset J, David M-O, Landousy F, Hamon L, Zozime A, Le Cam E (2003) Reversible binding of DNA on NiCl2-treated mica by varying the ionic strength. Langmuir 19:2536–2539

    Article  CAS  Google Scholar 

  10. Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C, Delain E (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy:42, 1243–44, 1249

    Google Scholar 

  11. Hansma HG, Sinsheimer RL, Li MQ, Hansma PK (1992) Atomic force microscopy of single- and double-stranded DNA. Nucleic Acids Res 20:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pastré D, Piétrement O, Fusil SS, Landousy F, Jeusset J, David M-O, Hamon L, Le Cam E, Zozime A, Pastré D et al (2003) Adsorption of DNA to Mica mediated by divalent Counterions: a theoretical and experimental study. Biophys J 85:2507–2518

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rouzina I, Bloomfield VA (1998) DNA bending by small, mobile multivalent cations. Biophys J 74:3152–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamon L, Pastré D, Dupaigne P, Le Breton C, Le Cam E, Piétrement O (2007) High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes. Nucl Acids Res 35:e58

    Article  CAS  PubMed  Google Scholar 

  15. Lyubchenko YL, Jacobs BL, Lindsay SM (1992) Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res 20:3983–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213

    Article  CAS  PubMed  Google Scholar 

  17. Pastré D, Hamon L, Landousy F, Sorel I, David M-O, Zozime A, Le Cam E, Piétrement O (2006) Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir 22:6651–6660

    Article  CAS  PubMed  Google Scholar 

  18. Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E et al (2007) A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130:824–836

    Article  CAS  PubMed  Google Scholar 

  19. Esta A, Ma E, Dupaigne P, Maloisel L, Guerois R, Le Cam E, Veaute X, Coïc E (2013) Rad52 Sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2. PLoS Genet 9:e1003833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dupaigne P, Lavelle C, Justome A, Lafosse S, Mirambeau G, Lipinski M, Piétrement O, Le Cam E (2008) Rad51 polymerization reveals a new chromatin remodeling mechanism. PLoS One 3:e3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC (2003) The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278:23410–23417

    Article  CAS  PubMed  Google Scholar 

  22. Zaitseva EM, Zaitsev EN, Kowalczykowski SC (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem 274:2907–2915

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer W-D (2011) Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fuller FB (1971) The writhing number of a space curve. Proc Natl Acad Sci U S A 68:815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sivolob A, Lavelle C, Prunell A (2003) Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain. J Mol Biol 326:49–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Le Cam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupaigne, P., Tavares, E.M., Piétrement, O., Le Cam, E. (2018). Recombinases and Related Proteins in the Context of Homologous Recombination Analyzed by Molecular Microscopy. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics