Skip to main content

Gangliosides and Tumors

  • Protocol
  • First Online:
Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

Abstract

Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial–mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EMT:

Epithelial–mesenchymal transition

GEM:

Glycolipid enriched microdomain

HIF:

Hypoxia inducible factor

iPS cells:

Inducible pluripotent stem cells

SSEA:

Stage-specific embryonic antigen

References

  1. No authors listed (2015) Dinutuximab approved for high-risk neuroblastoma. Cancer Discov 5:OF5

    Google Scholar 

  2. Dhillon S (2015) Dinutuximab: first global approval. Drugs 75:923–927

    Article  PubMed  CAS  Google Scholar 

  3. Gabri MR, Cacciavillano W, Chantada GL, Alonso DF (2016) Racotumomab for treating lung cancer and pediatric refractory malignancies. Expert Opin Biol Ther 16:573–578

    Article  PubMed  CAS  Google Scholar 

  4. Hakomori SI, Murakami WT (1968) Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci U S A 59:254–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

    Article  PubMed  CAS  Google Scholar 

  6. Hakomori SI, Handa K (2015) GM3 and cancer. Glycoconj J 32:1–8

    Article  PubMed  CAS  Google Scholar 

  7. Zhou Q, Hakomori S, Kitamura K, Igarashi Y (1994) GM3 directly inhibits tyrosine phosphorylation and De-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J Biol Chem 269:1959–1965

    PubMed  CAS  Google Scholar 

  8. Liu JW, Sun P, Yan Q, Paller AS, Gerami P, Ho N et al (2009) De-N-acetyl GM3 promotes melanoma cell migration and invasion through urokinase plasminogen activator receptor signaling-dependent MMP-2 activation. Cancer Res 69:8662–8669

    Article  PubMed  CAS  Google Scholar 

  9. Kawashima N, Qu H, Lobaton M, Zhu Z, Sollogoub M, Cavenee WK et al (2014) Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation. Oncol Lett 7:933–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Noguchi M, Suzuki T, Kabayama K, Takahashi H, Chiba H, Shiratori M et al (2007) GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Sci 98:1625–1632

    Article  PubMed  CAS  Google Scholar 

  11. Kawashima N, Nishimiya Y, Takahata S, Nakayama KI (2016) Induction of glycosphingolipid GM3 expression by valproic acid suppresses cancer cell growth. J Biol Chem 291:21424–21433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Prinetti A, Aureli M, Illuzzi G, Prioni S, Nocco V, Scandroglio F et al (2010) GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 20:62–77

    Article  PubMed  CAS  Google Scholar 

  13. Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G et al (2011) Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. Adv Exp Med Biol 705:643–667

    Article  PubMed  CAS  Google Scholar 

  14. Prinetti A, Cao T, Illuzzi G, Prioni S, Aureli M, Gagliano N et al (2011) A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J Biol Chem 286:40900–40910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Roncati L, Barbolini G, Gatti AM, Pusiol T, Piscioli F, Maiorana A (2016) The uncontrolled sialylation is related to chemoresistant metastatic breast cancer. Pathol Oncol Res 22:869–873

    Article  PubMed  CAS  Google Scholar 

  16. Choi SY, Jang JH, Kim KR (2011) Analysis of differentially expressed genes in human rectal carcinoma using suppression subtractive hybridization. Clin Exp Med 11:219–226

    Article  PubMed  CAS  Google Scholar 

  17. Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI (2013) Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A 110:4968–4973

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mathow D, Chessa F, Rabionet M, Kaden S, Jennemann R, Sandhoff R et al (2015) Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO Rep 16:321–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kilbey A, Terry A, Jenkins A, Borland G, Zhang Q, Wakelam MJ et al (2010) Runx regulation of sphingolipid metabolism and survival signaling. Cancer Res 70:5860–5869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L (2017) MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Investig 97(5):530–542

    Article  PubMed  CAS  Google Scholar 

  21. Shiozaki K, Takahashi K, Hosono M, Yamaguchi K, Hata K, Shiozaki M et al (2015) Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB J 29:2099–2111

    Article  CAS  PubMed  Google Scholar 

  22. Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I et al (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99:10718–10723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Miyagi T, Takahashi K, Hata K, Shiozaki K, Yamaguchi K (2012) Sialidase significance for cancer progression. Glycoconj J 29:567–577

    Article  PubMed  CAS  Google Scholar 

  24. Wada T, Hata K, Yamaguchi K, Shiozaki K, Koseki K, Moriya S et al (2007) A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene 26:2483–2490

    Article  PubMed  CAS  Google Scholar 

  25. Mozzi A, Forcella M, Riva A, Difrancesco C, Molinari F, Martin V et al (2015) NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology 25:855–868

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi K, Shiozaki K, Moriya S, Koseki K, Wada T, Tateno H et al (2012) Reduced susceptibility to colitis-associated colon carcinogenesis in mice lacking plasma membrane-associated sialidase. PLoS One 7:e41132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yamaguchi K, Koseki K, Shiozaki M, Shimada Y, Wada T, Miyagi T (2010) Regulation of plasma-membrane-associated sialidase NEU3 gene by Sp1/Sp3 transcription factors. Biochem J 430:107–117

    Article  PubMed  CAS  Google Scholar 

  28. Scaringi R, Piccoli M, Papini N, Cirillo F, Conforti E, Bergante S et al (2013) NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α. J Biol Chem 288:3153–3162

    Article  PubMed  CAS  Google Scholar 

  29. Yuyama Y, Dohi T, Morita H, Furukawa K, Oshima M (1995) Enhanced expression of GM2/GD2 synthase mRNA in human gastrointestinal cancer. Cancer 75:1273–1280

    Article  PubMed  CAS  Google Scholar 

  30. Biswas K, Richmond A, Rayman P, Biswas S, Thornton M, Sa G et al (2006) GM2 expression in renal cell carcinoma: potential role in tumor-induced T-cell dysfunction. Cancer Res 66:6816–6825

    Article  PubMed  CAS  Google Scholar 

  31. Biswas S, Biswas K, Richmond A, Ko J, Ghosh S, Simmons M et al (2009) Elevated levels of select gangliosides in T cells from renal cell carcinoma patients is associated with T cell dysfunction. J Immunol 183:5050–5058

    Article  PubMed  CAS  Google Scholar 

  32. Kundu M, Mahata B, Banerjee A, Chakraborty S, Debnath S, Ray SS et al (2016) Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway. Biochim Biophys Acta 1863:1472–1489

    Article  PubMed  CAS  Google Scholar 

  33. Mahata B, Banerjee A, Kundu M, Bandyopadhyay U, Biswas K (2015) TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells. Sci Rep 5:9048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci U S A 105:1925–1930

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dall’Olio F, Malagolini N, Chiricolo M, Trinchera M, Harduin-Lepers A (2014) The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2. Biochim Biophys Acta 1840:443–453

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka K, Miyazawa M, Mikami M, Aoki D, Kiguchi K, Iwamori M (2016) Enhanced expression of unique gangliosides with GM2-determinant in human uterine cervical carcinoma-derived cell lines. Glycoconj J 33:745–754

    Article  PubMed  CAS  Google Scholar 

  37. Kawamura YI, Toyota M, Kawashima R, Hagiwara T, Suzuki H, Imai K et al (2008) DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology 135:142–151

    Article  PubMed  CAS  Google Scholar 

  38. Malagolini N, Santini D, Chiricolo M, Dall'Olio F (2007) Biosynthesis and expression of the Sda and sialyl Lewis x antigens in normal and cancer colon. Glycobiology 17:688–697

    Article  PubMed  CAS  Google Scholar 

  39. Yamada T, Bando H, Takeuchi S, Kita K, Li Q, Wang W et al (2011) Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells. Cancer Sci 102:2157–2163

    Article  PubMed  CAS  Google Scholar 

  40. Li Q, Wang W, Machino Y, Yamada T, Kita K, Oshima M et al (2015) Therapeutic activity of glycoengineered anti-GM2 antibodies against malignant pleural mesothelioma. Cancer Sci 106:102–107

    Article  PubMed  CAS  Google Scholar 

  41. Eggermont AM, Suciu S, Rutkowski P, Marsden J, Santinami M, Corrie P et al (2013) Adjuvant ganglioside GM2-KLH/QS-21 vaccination versus observation after resection of primary tumor > 1.5 mm in patients with stage II melanoma: results of the EORTC 18961 randomized phase III trial. J Clin Oncol 31:3831–3837

    Article  PubMed  CAS  Google Scholar 

  42. Furukawa K, Hamamura K, Ohkawa Y, Ohmi Y (2012) Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj J 29:579–584

    Article  PubMed  CAS  Google Scholar 

  43. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO et al (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yeh SC, Wang PY, Lou YW, Khoo KH, Hsiao M, Hsu TL et al (2016) Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc Natl Acad Sci U S A 113:5592–5597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ruckhaberle E, Karn T, Rody A, Hanker L, Gatje R, Metzler D et al (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013

    Article  PubMed  CAS  Google Scholar 

  46. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A et al (2010) GD synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 8:1526–1535

    Article  PubMed  CAS  Google Scholar 

  47. Furukawa K, Kambe M, Miyata M, Ohkawa Y, Tajima O (2014) Ganglioside GD3 induces convergence and synergism of adhesion and hepatocyte growth factor/Met signals in melanomas. Cancer Sci 105:52–63

    Article  PubMed  CAS  Google Scholar 

  48. Bobowski M, Vincent A, Steenackers A, Colomb F, Van S, Julien S et al (2013) Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFκB binding to ST8SIA1 promoter. PLoS One 8:e62559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Pena EQ, Taube JH et al (2015) GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 34:2958–2967

    Article  PubMed  CAS  Google Scholar 

  50. Mitchell SM, Ross JP, Drew HR, Ho T, Brown GS, Saunders NF et al (2014) A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 14:54–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lorusso G, Ruegg C (2012) New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 22:226–233

    Article  PubMed  CAS  Google Scholar 

  54. Hu G, Kang Y, Wang XF (2009) From breast to the brain: unraveling the puzzle of metastasis organotropism. J Mol Cell Biol 1:3–5

    Article  PubMed  CAS  Google Scholar 

  55. Vandermeersch S, Vanbeselaere J, Delannoy CP, Drolez A, Mysiorek C, Guerardel Y et al (2015) Accumulation of GD1α ganglioside in MDA-MB-231 breast cancer cells expressing ST6GalNAc V. Molecules 20:6913–6924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Drolez A, Vandenhaute E, Delannoy CP, Dewald JH, Gosselet F, Cecchelli R et al (2016) ST6GALNAC5 expression decreases the interactions between breast cancer cells and the human blood-brain barrier. Int J Mol Sci 17:E1309

    Article  PubMed  CAS  Google Scholar 

  57. Bhuiyan RH, Kondo Y, Yamaguchi T, Tokuda N, Ohkawa Y, Hashimoto N et al (2016) Expression analysis of 0-series gangliosides in human cancer cell lines with monoclonal antibodies generated using knockout mice of ganglioside synthase genes. Glycobiology 26:984–998

    Article  PubMed  CAS  Google Scholar 

  58. Kroes RA, Dawson G, Moskal JR (2007) Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem 103(Suppl 1):14–24

    Article  PubMed  CAS  Google Scholar 

  59. Kroes RA, He H, Emmett MR, Nilsson CL, Leach FE III, Amster IJ et al (2010) Overexpression of ST6GalNAcV, a ganglioside-specific α2,6-sialyltransferase, inhibits glioma growth in vivo. Proc Natl Acad Sci U S A 107:12646–12651

    Article  PubMed  PubMed Central  Google Scholar 

  60. Samraj AN, Laubli H, Varki N, Varki A (2014) Involvement of a non-human sialic acid in human cancer. Front Oncol 4:33

    PubMed  PubMed Central  Google Scholar 

  61. Yin J, Hashimoto A, Izawa M, Miyazaki K, Chen G-Y, Takematsu H et al (2006) Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res 66:2937–2945

    Article  PubMed  CAS  Google Scholar 

  62. Go S, Sato C, Yin J, Kannagi R, Kitajima K (2007) Hypoxia-enhanced expression of free deaminoneuraminic acid in human cancer cells. Biochem Biophys Res Commun 357:537–542

    Article  PubMed  CAS  Google Scholar 

  63. Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2:2930–2944

    Article  PubMed  CAS  Google Scholar 

  64. Bull C, Boltje TJ, Wassink M, de Graaf AM, van Delft FL, den Brok MH et al (2013) Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther 12:1935–1946

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi N, Chiba H, Kuronuma K, Go S, Hasegawa Y, Takahashi M et al (2013) Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Sci 104:43–47

    Article  PubMed  CAS  Google Scholar 

  66. Inoue S, Sato C, Kitajima K (2010) Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells. Glycobiology 20:752–762

    Article  PubMed  CAS  Google Scholar 

  67. Nystedt J, Anderson H, Hirvonen T, Impola U, Jaatinen T, Heiskanen A et al (2010) Human CMP-N-acetylneuraminic acid hydroxylase is a novel stem cell marker linked to stem cell-specific mechanisms. Stem Cells 28:258–267

    PubMed  CAS  Google Scholar 

  68. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O et al (1996) Gangliosides expressed in human breast cancer. Cancer Res 56:5165–5171

    CAS  PubMed  Google Scholar 

  69. Carr A, Mullet A, Mazorra Z, Vazquez AM, Alfonso M, Mesa C et al (2000) A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 19:241–247

    Article  PubMed  CAS  Google Scholar 

  70. Blanco R, Rengifo E, Cedeno M, Rengifo CE, Alonso DF, Carr A (2011) Immunoreactivity of the 14F7 Mab raised against N-glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system. ISRN Gastroenterol 2011:645641

    Article  PubMed  CAS  Google Scholar 

  71. Blanco R, Dominguez E, Morales O, Blanco D, Martinez D, Rengifo CE et al (2015) Prognostic significance of N-glycolyl GM3 ganglioside expression in non-small cell lung carcinoma patients: new evidences. Pathol Res Int 2015:132326

    Article  Google Scholar 

  72. Scursoni AM, Galluzzo L, Camarero S, Lopez J, Lubieniecki F, Sampor C et al (2011) Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer. Clin Dev Immunol 2011:245181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Miyake M, Ito M, Hitomi S, Ikeda S, Taki T, Kurata M et al (1988) Generation of two monoclonal antibodies that can discriminate N-glycolyl and N-acetyl neuraminic acid residues of GM2 gangliosides and distribution of the antigens in human lung cancer. Cancer Res 48:6154–6160

    PubMed  CAS  Google Scholar 

  74. Kawashima I, Ozawa H, Kotani M, Suzuki M, Kawano T, Gomibuchi M et al (1993) Characterization of ganglioside expression in human melanoma cells: immunological and biochemical analysis. J Biochem (Tokyo) 114:186–193

    Article  CAS  Google Scholar 

  75. Palomo AG, Santana RB, Perez XE, Santana DB, Gabri MR, Monzon KL et al (2016) Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it's potential therapeutic implications. Clin Exp Metastasis 33:717–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Herrera ZM, Ramos TC (2014) Pilot study of a novel combination of two therapeutic vaccines in advanced non-small-cell lung cancer patients. Cancer Immunol Immunother 63:737–747

    Article  PubMed  CAS  Google Scholar 

  77. Alfonso S, Valdes-Zayas A, Santiesteban ER, Flores YI, Areces F, Hernandez M et al (2014) A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin Cancer Res 20:3660–3671

    Article  PubMed  CAS  Google Scholar 

  78. Alfonso M, Diaz A, Hernandez AM, Perez A, Rodriguez E, Bitton R et al (2002) An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J Immunol 168:2523–2529

    Article  PubMed  CAS  Google Scholar 

  79. Diaz A, Alfonso M, Alonso R, Saurez G, Troche M, Catala M et al (2003) Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin Immunol 107:80–89

    Article  PubMed  CAS  Google Scholar 

  80. Hernandez AM, Rodriguez M, Lopez-Requena A, Beausoleil I, Perez R, Vazquez AM (2005) Generation of anti-Neu-glycolyl-ganglioside antibodies by immunization with an anti-idiotype monoclonal antibody: a self versus non-self-matter. Immunobiology 210:11–21

    Article  PubMed  CAS  Google Scholar 

  81. Solter D, Knowles BB (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A 75:5565–5569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Handa K, Hakomori SI (2016) Changes of glycoconjugate expression profiles during early development. Glycoconj J 34(6):693–699

    Article  PubMed  CAS  Google Scholar 

  83. Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB et al (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2:2355–2361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:1–12

    Article  CAS  Google Scholar 

  85. Yu AL, Hung JT, Ho MY, Yu J (2016) Alterations of glycosphingolipids in embryonic stem cell differentiation and development of glycan-targeting cancer immunotherapy. Stem Cells Dev 25:1532–1548

    Article  CAS  PubMed  Google Scholar 

  86. Saito S, Orikasa S, Satoh M, Ohyama C, Ito A, Takahashi T (1997) Expression of globo-series gangliosides in human renal cell carcinoma. Jpn J Cancer Res 88:652–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tokuyama S, Saito S, Takahashi T, Ohyama C, Ito A, Kanto S et al (2003) Immunostaining of stage-specific embryonic antigen-4 in intratubular germ cell neoplasia unclassified and in testicular germ-cell tumors. Oncol Rep 10:1097–1104

    PubMed  Google Scholar 

  88. Huang YL, Hung JT, Cheung SK, Lee HY, Chu KC, Li ST et al (2013) Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A 110:2517–2522

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gottschling S, Jensen K, Warth A, Herth FJ, Thomas M, Schnabel PA et al (2013) Stage-specific embryonic antigen-4 is expressed in basaloid lung cancer and associated with poor prognosis. Eur Respir J 41:656–663

    Article  PubMed  CAS  Google Scholar 

  90. Malecki M, Anderson M, Beauchaine M, Seo S, Tambokan X (2012) TRA-1-60(+), SSEA-4(+), Oct4A(+), Nanog(+) clones of pluripotent stem cells in the embryonal carcinomas of the ovaries. J Stem Cell Res Ther 2:130

    PubMed  PubMed Central  Google Scholar 

  91. Zhang W, Ding ML, Zhang JN, Qiu JR, Shen YH, Ding XY et al (2015) mTORC1 maintains the tumorigenicity of SSEA-4(+) high-grade osteosarcoma. Sci Rep 5:9604. https://doi.org/10.1038/:9604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Noto Z, Yoshida T, Okabe M, Koike C, Fathy M, Tsuno H et al (2013) CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol 49:787–795

    Article  PubMed  CAS  Google Scholar 

  93. Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY et al (2014) Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A 111:2482–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wenk J, Andrews PW, Casper J, Hata J, Pera MF, von Keitz A et al (1994) Glycolipids of germ cell tumors: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. Int J Cancer 58:108–115

    Article  PubMed  CAS  Google Scholar 

  95. Aloia A, Petrova E, Tomiuk S, Bissels U, Deas O, Saini M et al (2015) The sialyl-glycolipid stage-specific embryonic antigen 4 marks a subpopulation of chemotherapy-resistant breast cancer cells with mesenchymal features. Breast Cancer Res 17:146–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A et al (2015) Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 25:902–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Malecki M, Tombokan X, Anderson M, Malecki R, Beauchaine M (2013) TRA-1-60+, SSEA-4+, POU5F1+, SOX2+, NANOG+ Clones of pluripotent stem cells in the embryonal carcinomas of the testes. J Stem Cell Res Ther 3:1000134

    PubMed  PubMed Central  Google Scholar 

  98. Virant-Klun I, Kenda-Suster N, Smrkolj S (2016) Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 9:12–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cheng J, Yang K, Zhang Q, Yu Y, Meng Q, Mo N et al (2016) The role of mesenchymal stem cells in promoting the transformation of androgen-dependent human prostate cancer cells into androgen-independent manner. Sci Rep 6:16993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ye F, Li Y, Hu Y, Zhou C, Chen H (2010) Stage-specific embryonic antigen 4 expression in epithelial ovarian carcinoma. Int J Gynecol Cancer 20:958–964

    Article  PubMed  Google Scholar 

  102. Cheung SK, Chuang PK, Huang HW, Hwang-Verslues WW, Cho CH, Yang WB et al (2016) Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc Natl Acad Sci U S A 113:960–965

    Article  PubMed  CAS  Google Scholar 

  103. Saito S, Aoki H, Ito A, Ueno S, Wada T, Mitsuzuka K et al (2003) Human α2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem 278:26474–26479

    Article  PubMed  CAS  Google Scholar 

  104. Izzi B, Binder AM, Michels KB (2014) Pyrosequencing evaluation of widely available bisulfite conversion methods: considerations for application. Med Epigenet 2:28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Magalhaes A, Marcos-Pinto R, Nairn AV, dela RM, Ferreira RM, Junqueira-Neto S et al (2015) Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta 1852:1928–1939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Dunn CA, Medstrand P, Mager DL (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci U S A 100:12841–12846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dunn CA, van de Lagemaat LN, Baillie GJ, Mager DL (2005) Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate β3GAL-T5. Gene 364:2–12

    Article  PubMed  CAS  Google Scholar 

  108. Trinchera M, Zulueta A, Caretti A, Dall'Olio F (2014) Control of glycosylation-related genes by DNA methylation: the intriguing case of the B3GALT5 gene and its distinct promoters. Biology (Basel) 3:484–497

    CAS  Google Scholar 

  109. Zulueta A, Caretti A, Signorelli P, Dall'Olio F, Trinchera M (2014) Transcriptional control of the B3GALT5 gene by a retroviral promoter and methylation of distant regulatory elements. FASEB J 28:946–955

    Article  PubMed  CAS  Google Scholar 

  110. Steelant WF, Kawakami Y, Ito A, Handa K, Bruyneel EA, Mareel M et al (2002) Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett 531:93–98

    Article  PubMed  CAS  Google Scholar 

  111. Hung TC, Lin CW, Hsu TL, Wu CY, Wong CH (2013) Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc 135:5934–5937

    Article  PubMed  CAS  Google Scholar 

  112. Levery SB, Salyan MEK, Steele SJ, Kannagi R, Dasgupta S, Chien JL et al (1994) A revised structure for the disialosyl globo-series gangliosides of human erythrocytes and chicken skeletal muscle. Arch Biochem Biophys 312:125–134

    Article  PubMed  CAS  Google Scholar 

  113. Kawasaki Y, Ito A, Kakoi N, Shimada S, Itoh J, Mitsuzuka K et al (2015) Ganglioside, disialosyl globopentaosylceramide (DSGb5), enhances the migration of renal cell carcinoma cells. Tohoku J Exp Med 236:1–7

    Article  PubMed  CAS  Google Scholar 

  114. Shimada S, Ito A, Kawasaki Y, Kakoi N, Taima T, Mitsuzuka K et al (2014) Ganglioside disialosyl globopentaosylceramide is an independent predictor of PSA recurrence-free survival following radical prostatectomy. Prostate Cancer Prostatic Dis 17:199–205

    Article  PubMed  CAS  Google Scholar 

  115. Senda M, Ito A, Tsuchida A, Hagiwara T, Kaneda T, Nakamura Y et al (2007) Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers. Biochem J 402:459–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kannagi R, Levery SB, Hakomori S (1984) Blood group H antigen with globo-series structure: Isolation and characterization from human blood group O erythrocytes. FEBS Lett 175:397–401

    Article  PubMed  CAS  Google Scholar 

  117. Bremer EG, Levery SB, Sonnio S, Ghidoni R, Canevari S, Kannagi R et al (1984) Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neo-plastic epithelial cells of human mammary gland. J Biol Chem 259:14773–14777

    PubMed  CAS  Google Scholar 

  118. Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT et al (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci U S A 105:11667–11672

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cheng JY, Wang SH, Lin J, Tsai YC, Yu J, Wu JC et al (2014) Globo-H ceramide shed from cancer cells triggers translin-associated factor X-dependent angiogenesis. Cancer Res 74:6856–6866

    Article  PubMed  CAS  Google Scholar 

  120. Clausen H, Watanabe K, Kannagi R, Levery SB, Nudelman E, Arao-Tomono Y et al (1984) Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem Biophys Res Commun 124:523–529

    Article  PubMed  CAS  Google Scholar 

  121. Sekine M, Taya C, Kikkawa Y, Yonekawa H, Takenaka M, Matsuoka Y et al (2001) Regulation of mouse kidney tubular epithelial cell-specific expression of core 2 GlcNAc transferase. Eur J Biochem 268:1129–1135

    Article  PubMed  CAS  Google Scholar 

  122. Suzuki A, Yoshioka S, Sekine M, Yonekawa H, Takenaka M, Kannagi R (2004) Core 2 GlcNAc transferase and kidney tubular cell-specific expression. Glycoconj J 20:151–156

    Article  PubMed  CAS  Google Scholar 

  123. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM (1990) ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63:475–484

    Article  PubMed  CAS  Google Scholar 

  124. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S et al (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250:1130–1132

    Article  PubMed  CAS  Google Scholar 

  125. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B (1990) Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 250:1132–1135

    Article  PubMed  CAS  Google Scholar 

  126. Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14:577–584

    Article  PubMed  CAS  Google Scholar 

  127. Tei K, Kawakami-Kimura N, Taguchi O, Kumamoto K, Higashiyama S, Taniguchi N et al (2002) Roles of cell adhesion molecules in tumor angiogenesis induced by co-transplantation of cancer and endothelial cells to nude rats. Cancer Res 62:6289–6296

    PubMed  CAS  Google Scholar 

  128. Cui HX, Wang H, Wang Y, Song J, Tian H, Xia C et al (2016) ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol Rep 36:3317–3324

    Article  PubMed  CAS  Google Scholar 

  129. Higai K, Miyazaki N, Azuma Y, Matsumoto K (2006) Interleukin-1β induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene. FEBS Lett 580:6069–6075

    Article  PubMed  CAS  Google Scholar 

  130. Yoshihama N, Yamaguchi K, Chigita S, Mine M, Abe M, Ishii K et al (2015) A novel function of CD82/KAI1 in sialyl Lewis antigen-mediated adhesion of cancer cells: Evidence for an anti-metastasis effect by down-regulation of sialyl Lewis antigens. PLoS One 10:e0124743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D et al (2011) Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res 71:7683–7693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Martin-Satue M, de Castellarnau C, Blanco J (1999) Overexpression of α(1,3)-fucosyltransferase VII is sufficient for the acquisition of lung colonization phenotype in human lung adenocarcinoma HAL-24Luc cells. Br J Cancer 80:1169–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Carvalho AS, Harduin-Lepers A, Magalhaes A, Machado E, Mendes N, Costa LT et al (2010) Differential expression of α-2,3-sialyltransferases and α-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int J Biochem Cell Biol 42:80–89

    Article  PubMed  CAS  Google Scholar 

  134. Shiozaki K, Yamaguchi K, Takahashi K, Moriya S, Miyagi T (2011) Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. J Biol Chem 286:21052–21061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Vecchio G, Parascandolo A, Allocca C, Ugolini C, Basolo F, Moracci M et al (2017) Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer. Oncotarget 8(16):27075–27092

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cheng TC, Tu SH, Chen LC, Chen MY, Chen WY, Lin YK et al (2015) Down-regulation of α-L-fucosidase 1 expression confers inferior survival for triple-negative breast cancer patients by modulating the glycosylation status of the tumor cell surface. Oncotarget 6:21283–21300

    PubMed  PubMed Central  Google Scholar 

  137. Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H et al (2016) Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci 107:734–745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Baudot AD, Crighton D, O'Prey J, Somers J, Sierra GP, Ryan KM (2016) p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death. Cell Cycle 15:2299–2308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kannagi R (2004) Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression – the Warburg effect revisited. Glycoconj J 20:353–364

    Article  PubMed  CAS  Google Scholar 

  140. Koike T, Kimura N, Miyazaki K, Yabuta T, Kumamoto K, Takenoshita S et al (2004) Hypoxia induces adhesion molecules on cancer cells—a missing link between Warburg effect and induction of selectin ligand carbohydrates. Proc Natl Acad Sci U S A 101:8132–8137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Mitsuoka C, Sawada-Kasugai M, Ando-Furui K, Izawa M, Nakanishi H, Nakamura S et al (1998) Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis x. J Biol Chem 273:11225–11233

    Article  PubMed  CAS  Google Scholar 

  142. Izawa M, Kumamoto K, Mitsuoka C, Kanamori A, Ohmori K, Ishida H et al (2000) Expression of sialyl 6-sulfo Lewis x is inversely correlated with conventional sialyl Lewis x expression in human colorectal cancer. Cancer Res 60:1410–1416

    PubMed  CAS  Google Scholar 

  143. Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R (2010) Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res 70:4064–4073

    Article  PubMed  CAS  Google Scholar 

  144. Hakomori S, Kannagi R (1983) Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst 71:231–251

    PubMed  CAS  Google Scholar 

  145. Kannagi R, Yin J, Miyazaki K, Izawa M (2008) Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants-Hakomori’s concepts revisited. Biochim Biophys Acta 1780:525–531

    Article  PubMed  CAS  Google Scholar 

  146. Kannagi R, Sakuma K, Miyazaki K, Lim K-T, Yusa A, Yin J et al (2010) Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: Clues in the ongoing search for new tumor markers. Cancer Sci 101:586–593

    Article  PubMed  CAS  Google Scholar 

  147. Miyazaki K, Sakuma K, Kawamura YI, Izawa M, Ohmori K, Mitsuki M et al (2012) Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors, siglec-7 and -9. J Immunol 188:4690–4700

    Article  PubMed  CAS  Google Scholar 

  148. Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  PubMed  CAS  Google Scholar 

  149. Zhang L, Shi J, Ji M, Liu W, Wang N, Guan H et al (2012) Methylation analysis of drug metabolism and transport genes in papillary thyroid cancer. Adv Sci Lett 17:243–250

    Article  CAS  Google Scholar 

  150. Inoue A, Okamoto K, Fujino Y, Nakagawa T, Muguruma N, Sannomiya K et al (2015) B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P. Br J Cancer 112:403–412

    Article  PubMed  CAS  Google Scholar 

  151. Kimura N, Mitsuoka C, Kanamori A, Hiraiwa N, Uchimura K, Muramatsu T et al (1999) Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by co-transfection of α1→3 fucosyltransferase VII and newly cloned GlcNAcβ: 6-sulfotransferase cDNA. Proc Natl Acad Sci U S A 96:4530–4535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Shida K, Misonou Y, Korekane H, Seki Y, Noura S, Ohue M et al (2009) Unusual accumulation of sulfated glycosphingolipids in colon cancer cells. Glycobiology 19:1018–1033

    Article  PubMed  CAS  Google Scholar 

  153. Sakuma K, Aoki M, Kannagi R (2012) Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 109:7776–7781

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kannagi R (2007) Carbohydrate antigen sialyl Lewis a -its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J 30:189–209

    PubMed  Google Scholar 

  155. Magnani JL, Brockhaus M, Smith DF, Ginsburg V, Blaszczyk M, Mitchell KF et al (1981) A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science 212:55–56

    Article  PubMed  CAS  Google Scholar 

  156. Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago K, Zenita K et al (1991) Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem Biophys Res Commun 179:713–719

    Article  PubMed  CAS  Google Scholar 

  157. Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991) A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem 266:14869–14872

    CAS  PubMed  Google Scholar 

  158. Takada A, Ohmori K, Yoneda T, Tsuyuoka K, Hasegawa A, Kiso M et al (1993) Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 53:354–361

    PubMed  CAS  Google Scholar 

  159. Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95:377–384

    Article  PubMed  CAS  Google Scholar 

  160. Chung TW, Kim SJ, Choi HJ, Song KH, Jin UH, Yu DY et al (2014) Hepatitis B virus X protein specially regulates the sialyl lewis a synthesis among glycosylation events for metastasis. Mol Cancer 13:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K et al (2011) ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet 89:407–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Grahn A, Barkhordar GS, Larson G (2002) Cloning and sequencing of nineteen transcript isoforms of the human α2,3-sialyltransferase gene, ST3Gal III; its genomic organisation and expression in human tissues. Glycoconj J 19:197–210

    Article  PubMed  CAS  Google Scholar 

  163. Schnaar JL (2014) ST3 β-galactoside α-2,3-sialyltransferase 3 (ST3GAL3). In: Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T (eds) Handbook of glycosyltransferases and related genes. Springer, Tokyo, pp 657–664

    Chapter  Google Scholar 

  164. Okajima T, Fukumoto S, Miyazaki H, Ishida H, Kiso M, Furukawa K et al (1999) Molecular cloning of a novel α2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J Biol Chem 274:11479–11486

    Article  PubMed  CAS  Google Scholar 

  165. Padro M, Cobler L, Garrido M, de Bolos C (2011) Down-regulation of FUT3 and FUT5 by shRNA alters Lewis antigens expression and reduces the adhesion capacities of gastric cancer cells. Biochim Biophys Acta 1810:1141–1149

    Article  PubMed  CAS  Google Scholar 

  166. Itai S, Arii S, Tobe R, Kitahara A, Kim YC, Yamabe H et al (1988) Significance of 2-3 and 2-6 sialylation of Lewis A antigen in pancreas cancer. Cancer 61:775–787

    Article  PubMed  CAS  Google Scholar 

  167. Itai S, Nishikata J, Yoneda T, Ohmori K, Tsunekawa S, Hiraiwa N et al (1991) Tissue distribution of sialyl 2-3 and 2-6 Lewis a antigens and the significance of serum 2-3/2-6 sialyl Lewis a antigen ratio for the differential diagnosis of malignant and benign disorders of the digestive tract. Cancer 67:1576–1587

    Article  PubMed  CAS  Google Scholar 

  168. Tsuchida A, Okajima T, Furukawa K, Ando T, Ishida H, Yoshida A et al (2003) Synthesis of disialyl Lewis a structure in colon cancer cell lines by a sialyltransferase ST6GalNAc VI responsible for the synthesis of α-series gangliosides. J Biol Chem 278:22787–22794

    Article  PubMed  CAS  Google Scholar 

  169. Miyazaki K, Ohmori K, Izawa M, Koike T, Kumamoto K, Furukawa K et al (2004) Loss of disialyl Lewisa, the ligand for lymphocyte inhibitory receptor Siglec-7, associated with increased sialyl Lewisa expression on human colon cancers. Cancer Res 64:4498–4505

    Article  PubMed  CAS  Google Scholar 

  170. Taketo MM (1998) Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Natl Cancer Inst 90:1529–1536

    Article  PubMed  CAS  Google Scholar 

  171. Taketo MM (2012) Roles of stromal microenvironment in colon cancer progression. J Biochem 151:477–481

    Article  PubMed  CAS  Google Scholar 

  172. Laubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA et al (2014) Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A 111:14211–14216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Bowden NA, Croft A, Scott RJ (2007) Gene expression profiling in familial adenomatous polyposis adenomas and desmoid disease. Hered Cancer Clin Pract 5:79–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Young WW Jr, Mills SE, Lippert MC, Ahmed P, Lau SK (1988) Deletion of antigens of the Lewis a/b blood group family in human prostatic carcinoma. Am J Pathol 131:578–586

    PubMed  PubMed Central  Google Scholar 

  175. Potapenko IO, Haakensen VD, Luders T, Helland A, Bukholm I, Sorlie T et al (2010) Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol 4:98–118

    Article  PubMed  CAS  Google Scholar 

  176. Natunen S, Satomaa T, Pitkanen V, Salo H, Mikkola M, Natunen J et al (2011) The binding specificity of the marker antibodies Tra-1-60 and Tra-1-81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology 21:1125–1130

    Article  PubMed  CAS  Google Scholar 

  177. Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiji Kannagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kannagi, R., Cai, BH., Huang, HC., Chao, CC., Sakuma, K. (2018). Gangliosides and Tumors. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics