Skip to main content

Gangliosides of the Nervous System

  • Protocol
  • First Online:
Book cover Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

Abstract

This review begins by attempting to recount some of the pioneering discoveries that first identified the presence of gangliosides in the nervous system, their structures and topography. This is presented as prelude to the current emphasis on physiological function, about which much has been learned but still remains to be elucidated. These areas include ganglioside roles in nervous system development including stem cell biology, membranes and organelles within neurons and glia, ion transport mechanisms, receptor modulation including neurotrophic factor receptors, and importantly the pathophysiological role of ganglioside aberrations in neurodegenerative disorders. This relates to their potential as therapeutic agents, especially in those conditions characterized by deficiency of one or more specific gangliosides. Finally we attempt to speculate on future directions ganglioside research is likely to take so as to capitalize on the impressive progress to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabius H-J (ed) (2009) The sugar code. Fundamenals of glycosciences. Weinheim, Wiley-Blackwell

    Google Scholar 

  2. Klenk E (1942) Uber die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden. Hoppe Seylers Z Physiol Chem 273:76–86

    Article  CAS  Google Scholar 

  3. Klenk E (1935) Uber die Natur der Phosphatide und anderer Lipoid des Gehirns und der Leber bei der Niemann-Pickschen Krankheit. Z Physiol Chem 235:24–36

    Article  CAS  Google Scholar 

  4. Klenk E (1937) Die Fettstoffe des Gehirns bei amaurotischer Idiotie und Niemann-Pick’scher Krankheit. Ber Physiol 96:659–660

    Google Scholar 

  5. Varki A, Schauer R (2009) Sialic acids. In: Varki A et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  6. Yamakawa T, Suzuki S (1951) The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I Concerning the ether-insoluble lipids of lyophilized horse blood stroma. J Biochem 38:199–212

    Article  CAS  Google Scholar 

  7. Kawano Y, Higuchi R, Komori T (1990) Isolation and structure of five new gangliosides. Liebig’s Ann Chem 1990:43–50

    Article  Google Scholar 

  8. Kuhn R, Wiegandt H (1963) Die Konstitutionder Ganglio-N-tetraose und des gangliosids GI. Chem Ber 96:866–880

    Article  CAS  Google Scholar 

  9. Chester MA (1998) IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids—recommendations 1997. Eur J Biochem 257:293–298

    Article  PubMed  CAS  Google Scholar 

  10. Svennerholm L (1963) Chromatographic separation of human bran gangliosides. J Neurochem 10:613–623

    Article  PubMed  CAS  Google Scholar 

  11. Kuhn R, Wiegandt H (1963) Die Konstitution der Ganglioside GII, GIII, und GIV. Z Naturforsch 18b:541–543

    Article  CAS  Google Scholar 

  12. Klenk E, Gielen W (1963) Uber ein zweites hexosaminhaltiges Gangliosid aus Menschengehirn. Z Physiol Chem 330:218–226

    Article  CAS  Google Scholar 

  13. Kuhn R, Wiegandt H (1964) Weitere Ganglioside aus Menschenhirn. Z Naturforsch 19b:256–257

    Article  CAS  Google Scholar 

  14. Klenk E (1970) On the discovery and chemistry of neuraminic acid and gangliosides. Chem Phys Lipids 5:193–197

    Article  PubMed  CAS  Google Scholar 

  15. Klenk E, Liedtke U, Gielen W (1963) Das Gangliosid des Gehirns bei der intantilen amaurotischen idiote von Typ Tay-Sachs. Z Physiol Chem 334:186–192

    Article  CAS  Google Scholar 

  16. Ledeen R, Salsman K (1965) Structure of the Tay-Sachs ganglioside. Biochemist 4:2225–2233

    Article  CAS  Google Scholar 

  17. Yu RK, Yanagisawa M, Ariga T (2007) Glycosphingolipid sructures. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, Oxford, pp 73–122

    Chapter  Google Scholar 

  18. Hakomori S, Handa K, Iwabuchi K, Yasmamura S, Prinetti A (1998) New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiol 8:xi–xix

    Article  CAS  Google Scholar 

  19. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R

    Article  PubMed  Google Scholar 

  21. Furukawa K, Ohmi Y, Ohkawa Y, Tokuda N, Kondo Y, Tajima O, Furukawa K (2011) Regulatory mechanisms of nervous systems with glycoosphingolipids. Neurochem Res 36:1578–1586

    Article  PubMed  CAS  Google Scholar 

  22. Ohmi Y, Ohkawa Y, Yamauchi Y, Tajima O, Furukawa K, Furukawa K (2012) Essential roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues. Neurochem Res 37:1185–1191

    Article  PubMed  CAS  Google Scholar 

  23. Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T, Furukawa K (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378

    Article  PubMed  CAS  Google Scholar 

  24. Aureli M, Mauri L, Grazia Ciampa M, Prinetti A, Toffano G, Secchieri C, Sonnino S (2016) GM1 ganglioside: past studies and future potential. Mol Neurobiol 53:1824–1842

    Article  PubMed  CAS  Google Scholar 

  25. Ishizuka I, Wiegandt H (1972) An isomer of trisialoganglioside and the structure of tetra- and pentasialogangliosides from fish brain. Biochim Biophys Acta 260:279–289

    Article  PubMed  CAS  Google Scholar 

  26. Yu RK, Ando S (1980) Structure of some new complex gangliosides of fish brain. Adv Exp Med Biol 125:33–45

    Article  PubMed  CAS  Google Scholar 

  27. Irie F, Kurono S, Li Y-T, Seyama Y, Hirabayashi Y (1996) Isolation of three novel cholinergic neuron-specific gangliosides from bovine brain and their inn vitro syntheses. Glycoconj J 13:177–186

    Article  PubMed  CAS  Google Scholar 

  28. Svennerholm L, Bostrom K, Fredman P, Jungbjer B, Lekman A, Mansson JE, Rynmark BM (1994) Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim Biophys Acta 1214:115–123

    Article  PubMed  CAS  Google Scholar 

  29. Yu RK, Ledeen R (1970) Gas-liquid chromatographic assay of lipid-bound sialic acids: measurement of gangliosides in brain of several species. J Lipid Res 11:506–516

    PubMed  CAS  Google Scholar 

  30. Miyagi T, Yamaguchi K (2012) Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology 22:880–896

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Yamaguchi K, Wada T, Hata K, Zhao X, Fujimoto T, Miyagi T (2002) A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem 277:26252–26259

    Article  PubMed  CAS  Google Scholar 

  32. Ledeen R, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  PubMed  CAS  Google Scholar 

  33. Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, Egge H et al (1986) Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem 261:8514–8519

    CAS  PubMed  Google Scholar 

  34. Li YT, Maskos K, Chou CW, Cole RB, Li SC (2003) Presence of an unusual GM2 derivative, taurine-conjugated GM2, in Tay-Sachs brain. J Biol Chem 278:35286–35291

    Article  PubMed  CAS  Google Scholar 

  35. Carter HE, Glick FJ, Norris WP, Phillips GE (1947) Biochemistry of sphingolipids. III. Structure of sphingosine. J Biol Chem 170:285–294

    CAS  Google Scholar 

  36. Sonnino S, Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469(2):63–77

    Article  CAS  PubMed  Google Scholar 

  37. Merrill AH Jr (2011) Sphingolipid and glycosphingoliipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemist 46:1868–1877

    Article  CAS  Google Scholar 

  39. Bartels T, Kim NC, Luth ES, Selkoe DJ (2014) N-alpha-acetylation of alpha-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 9:e103727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fantini J (2007) Interaction of proteins with lipid rafts through glycolipid-binding domains: biochemical background and potential therapeutic applications. Curr Med Chem 14:2911–2917

    Article  PubMed  CAS  Google Scholar 

  41. Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 4(120). https://doi.org/10.3389/fphys.2013.00120

  42. Fantini J, Yahi N (2011) Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408:654–669

    Article  PubMed  CAS  Google Scholar 

  43. Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL et al (2015) GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol 263:177–189

    Article  PubMed  CAS  Google Scholar 

  44. Wu G, Lu Z-H, Wei TJ, Howells RD, Christoffers K, Ledeen RW (1998) The role of GM1 ganglioside in regulating excitatory opioid effects. Ann N Y Acad Sci 845:126–138

    Article  PubMed  CAS  Google Scholar 

  45. Wu G, Lu Z-H, Andre S, Gabius H-J, Ledeen RW (2016) Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca influx. J Neurochem 136:550–563

    Article  PubMed  CAS  Google Scholar 

  46. Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990) Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 252:419–527

    PubMed  CAS  Google Scholar 

  48. Wu G, Lu Z-H, Wang J, Wang Y, Xie X, Meyenhofer MF, Ledeen RW (2005) Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA20, a membrane-permeant analog of GM1. J Neurosci 25:11014–11022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu G, Lu Z-H, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008

    Article  PubMed  CAS  Google Scholar 

  50. Manna M, Javanainen M, Monne HM-S, Gabius H-J, Rog T, Vattulainen I (2017) Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. Biochim Biophys Acta Biomembr 1859:870–878

    Article  CAS  PubMed  Google Scholar 

  51. Yu RK, Macala LJ, Taki T, Weinfeld HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  PubMed  CAS  Google Scholar 

  52. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  PubMed  CAS  Google Scholar 

  53. Tsai Y-T, Yu RK (2014) Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 128:101–110

    Article  PubMed  CAS  Google Scholar 

  54. Tsai Y-T, Itokazu Y, Yu RK (2016) GM1 ganglioside is involved in epigenetic activation loci of neuronal cells. Neurochem Res 41:107–115

    Article  PubMed  CAS  Google Scholar 

  55. Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius H-J (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth controlling activity of a cell surface ganglioside sialidase on human neuroblastoma cells in culture. J Biol Chem 273:11205–11211

    Article  PubMed  CAS  Google Scholar 

  56. Purpura DP, Suzuki K (1976) Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. Brain Res 116:1–21

    Article  PubMed  CAS  Google Scholar 

  57. Walkley SU, Wurzelmann S, Purpura DP (1981) Ultrastructure of neuritis and meganeurites of cortical pyramidal neurons in feline gangliosidosis as revealed by the combined Golgi-EM technique. Brain Res 211:393–398

    Article  PubMed  CAS  Google Scholar 

  58. Roisen FJ, Bartfeld H, Nagele R, Yorke G (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214:577–578

    Article  PubMed  CAS  Google Scholar 

  59. Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305

    Article  PubMed  CAS  Google Scholar 

  60. Byrne MC, Ledeen RW, Roisen FJ, Yorke G, Sclafani JR (1983) Ganglioside-induced neuritogenesis: verification that gangliosides are the active agents, and comparison of molecular species. J Neurochem 41(5):1214–1222

    Article  PubMed  CAS  Google Scholar 

  61. Cannella MS, Acher AJ, Ledeen RW (1998) Stimulation of neurite outgrowth in vitro by a glycerol-gangliioside. Int J Dev Neurosci 6:319–326

    Article  Google Scholar 

  62. Wu G, Fang Y, Lu Z-H, Ledeen RW (1998) Induction of axon-like and dendrite-like processes in neuroblastoma cells. J Neurocytol 27:1–14

    Article  PubMed  CAS  Google Scholar 

  63. Yu RK, Suzuki Y, Yanagisawa M (2010) Membrane glycolipids in stem cells. FEBS Lett 584:1694–1699

    Article  PubMed  CAS  Google Scholar 

  64. Yanagisawa M (2011) Stem cell glycolipids. Neurochem Res 36:1623–1635

    Article  PubMed  CAS  Google Scholar 

  65. Wang J, Yu RK (2013) Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Nat Acad Sci 110:19137–19142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang J, Cheng A, Wakade C, Yu RK (2014) Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. J Neurosci 34:13790–13800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Suzuki K (1965) The pattern of mammalian brain gangliosides – III. J Neurochem 12:969–979

    Article  CAS  Google Scholar 

  68. Schwarz A, Futerman AH (1996) The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochim Biophys Acta 1286:247–267

    Article  PubMed  CAS  Google Scholar 

  69. Schengrund C-L, Ringler NJ (1989) Binding of Vibrio cholera toxin and the heat labile enterotoxin of Escherichia coli to GM1 and derivatives of GM1. J Biol Chem 264:13233–13237

    PubMed  CAS  Google Scholar 

  70. Vajn K, Viljetic B, Degmecic I, Schnaar RL, Heffer M (2013) Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS One 8:e75720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Colsch B, Jackson SN, Dutta S, Woods AS (2011) Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem Neurosci 2:213–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Schengrund C-L, Repman MA (1977) Cell culture of sixteen-day-old rat embryo cerebra and associated changes in ganglioside pattern. J Neurochem 29:923–927

    Article  PubMed  CAS  Google Scholar 

  73. Yavin E, Yavin Z (1979) Ganglioside profiles during neural tissue development. Dev Neurosci 2:25–37

    Article  CAS  Google Scholar 

  74. Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 5:1647–1655

    Article  PubMed  CAS  Google Scholar 

  75. Sbaschnig-Agler M, Dreyfus H, Norton WT, Sensenbrenner M, Farooq M, Byrne MC, Ledeen RW (1988) Gangliosides of cultured astroglia. Brain Res 461:98–106

    Article  PubMed  CAS  Google Scholar 

  76. Asou H, Brunngraber EG (1983) Absence of ganglioside GM1 in astroglial cells from 21-day old rat brain: immunohistochemical, histochemical, and biochemical studies. Nerochem Res 8:1045–1057

    Article  CAS  Google Scholar 

  77. Abe T, Norton WT (1974) The characterization of sphingolipids from neurons and astroglia of immature rat brain. J Neurochem 23:1025–1036

    Article  PubMed  CAS  Google Scholar 

  78. Norton WT, Abe T, Poduslo SE, DeVries GH (1975) The lipid composition of isolated brain cells and axons. J Neurosci Res 1:57–75

    Article  PubMed  CAS  Google Scholar 

  79. Hamburger A, Svennerholm L (1971) Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J Neurochem 18:1821–1829

    Article  Google Scholar 

  80. Robert J, Freysz L, Sensenbrenner M, Mandel P, Rebel G (1975) Gangliiosides of glial cells: a comparative study of normal astroblasts in tissue culture and glial cells isolated on sucrose-ficoll gradients. FEBS Lett 50:144–146

    Article  PubMed  CAS  Google Scholar 

  81. Byrne MC, Farooq M, Sbaschnig-Agler M, Norton WT, Ledeen RW (1988) Ganglioside content of astroglia and neurons isolated from maturing rat brain: consideration of the source of astroglial gangliosides. Brain Res 461:87–97

    Article  PubMed  CAS  Google Scholar 

  82. Gammon CM, Vaswani KK, Ledeen RW (1987) Isolation of two glycolipid transfer proteins from bovine brain: reactivity toward gangliosides and neutral glycosphingolipids. Biochemist 26:6239–6243

    Article  CAS  Google Scholar 

  83. Seyfried TN, Yu RK, Miyazawa N (1982) Differential cellular enrichment of gangliosides in the mouse cerebellum: analysis using neurological mutants. J Neurochem 38:551–559

    Article  PubMed  CAS  Google Scholar 

  84. Giuliani A, Calappi E, Borroni E, Whittaker VP, Sonnino S, Tettamanti G (1990) Further studies on the gangliosidic nature of the cholinergic-specific antigen, Chol-1. Arch Biochem Biophys 280:211–216

    Article  PubMed  CAS  Google Scholar 

  85. Ando S, Hirabayashi Y, Kon K, Inagaki F, Tate S, Whittaker VP (1992) A trisialoganglioside containing a sialyl α2-6 N-acetylgalactosamine residue is a cholinergic specific antigen, Chol1-1α. J Biochem 111:287–290

    Article  PubMed  CAS  Google Scholar 

  86. Hirabayashi Y, Nakao T, Irie F, Whittaker VP, Kon K, Ando S (1992) Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain. J Biol Chem 267:12973–12978

    PubMed  CAS  Google Scholar 

  87. Hirabayashi Y, Hyogo A, Nakao T, Tsuchiya K, Suzuki Y, Matsumoto M, Kon K, Ando S (1990) Isolation and characterization of extremely minor gangliosides, GM1b and GD1α, in adult bovine brains as developmentally regulated antigens. J Biol Chem 265:8144–8151

    PubMed  CAS  Google Scholar 

  88. Ando S, Tanaka Y, Kobayashi S, Fukui F, Iwamoto M, Waki H, Tai T, Hirabayashi Y (2004) Synaptic function of cholinergic-specific Chol-1alpha ganglioside. Neurochem Res 29:857–867

    Article  PubMed  CAS  Google Scholar 

  89. Suzuki K, Poduslo SE, Norton WT (1967) Gangliosides in the myelin fraction of developing rats. Biochim Biophys Acta 144:375–381

    Article  PubMed  CAS  Google Scholar 

  90. Ledeen RW, Yu RK, Eng LF (1973) Gangliiosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J Neurochem 21:829–839

    Article  CAS  PubMed  Google Scholar 

  91. Cochran FB Jr, Yu RK, Ledeen RW (1982) Myelin gangliosides in vertebrates. J Neurochem 39:773–779

    Article  PubMed  CAS  Google Scholar 

  92. Yu RK, Iqbal K (1979) Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 32:293–300

    Article  PubMed  CAS  Google Scholar 

  93. Yu RK, Macala LJ, Farooq M, Sbaschnig-Agler NWT, Ledeen RW (1989) Ganglioside and lipid composition of bulk-isolated rat and bovine oligodendroglia. J Neurosci Res 23:136–141

    Article  PubMed  CAS  Google Scholar 

  94. Littlemore LAT, Ledeen RW (1979) N.M.R. studies of myelin basic protein. III. Interactions of the protein with lipid micelles by 1H and 31P N.M.R. Aust J Chem 32:2631–2636

    Article  CAS  Google Scholar 

  95. Mullin BR, Decandis FX, Montanaro AJ, Reid JD (1981) Myelin basic protein interacts with the myelin-specific ganglioside GM4. Brain Res 222:218–221

    Article  PubMed  CAS  Google Scholar 

  96. Andersson LM, Fredman P, Lekman A, Rosengren L, Gisslen M (1998) Increased cerebrospinal fluid ganglioside GD3 concentrations as a marker of microglial activation in HIV type 1 infection. AIDS Res Hum Retrovir 14:1065–1969

    Article  PubMed  CAS  Google Scholar 

  97. Simon BM, Malisan F, Testi R, Nicotera P, Leist M (2002) Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ 9:758–767

    Article  PubMed  CAS  Google Scholar 

  98. Ogawa-Goto K, Abe T (1998) Gangliosides and glycosophingolipids of peripheral nervous system myelins—a minireview. Neurochem Res 23:305–310

    Article  PubMed  CAS  Google Scholar 

  99. Ohsawa T (1990) Rat dorsal root ganglion gangliosides during early development until senescence. Mech Aging Dev 53:259–266

    Article  PubMed  CAS  Google Scholar 

  100. Fong JW, Ledeen RW, Kundu SK, Brostoff SW (1976) Gangliosides of peripheral nerve myelin. J Neurochem 26:157–162

    PubMed  CAS  Google Scholar 

  101. Avrova NF, Chenykaeva EY, Obukhova EL (1973) Ganglioside composition and content of rat-brain subcellular fractions. J Neurochem 20:997–1004

    Article  PubMed  CAS  Google Scholar 

  102. Breckenridge WC, Gombos G, Morgan IG (1972) The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266:695–707

    Article  PubMed  CAS  Google Scholar 

  103. Lapetina EG, Soto EF, De Robertis E (1968) Lipids and proteolipids in isolated subcellular membranes of rat brain cortex. J Neurochem 15:437–445

    Article  PubMed  CAS  Google Scholar 

  104. Ledeen RW (1978) Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct 8:1–17

    Article  PubMed  CAS  Google Scholar 

  105. Skrivanek JA, Ledeen RW, Margolis RU, Margolis RK (1982) Gangliosides associated with microsomal subfractions of brain: comparison with synaptic plasma membranes. J Neurobiol 13:95–106

    Article  PubMed  CAS  Google Scholar 

  106. Hansson HA, Holmgren J, Svennerholm L (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci U S A 74:3782–3786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Devries GH, Zmachinski CJ (1980) The lipid composition of rat CNS axolemma-enriched fractions. J Neurochem 34:424–430

    Article  CAS  Google Scholar 

  108. Forman DS, Ledeen RW (1972) Axonal transport of gangliosides in the goldfish optic nerve. Science 177:630–633

    Article  PubMed  CAS  Google Scholar 

  109. Aquino DA, Bisby MA, Ledeen RW (1987) Bidirectional transport of gangliosides, glycoproteins, and neutral glycosphingoliipids in the sensory neurons of rat sciatic nerve. Neuroscience 20:1023–1029

    Article  PubMed  CAS  Google Scholar 

  110. Ledeen RW, Diebler MF, Wu G, Lu ZH, Varoqui H (1993) Ganglioside composition of subcellular fractions, including pre- and postsynaptic membranes, from Torpedo electric organ. Neurochem Res 18:1151–1155

    Article  PubMed  CAS  Google Scholar 

  111. Sbaschnig-Agler M, Pfenninger KH, Ledeen RW (1988) Gangliosides and other lipids of the growth cone membrane. J Neurochem 51:212–220

    Article  PubMed  CAS  Google Scholar 

  112. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G (1973) Adult rat brain synaptic vesicles II. Lipid composition. Biochim Biophys Acta 320:681–686

    Article  PubMed  CAS  Google Scholar 

  113. Ledeen RW, Parsons SM, Diebler MF, Sbaschnig-Agler M, Lazereg S (1988) Ganglioside composition of synaptic vesicles from Torpedo electric organ. J Neurochem 51:1465–1469

    Article  PubMed  CAS  Google Scholar 

  114. Margolis RU, Ledeen RW, Sbaschnig-Agler M, Byrne MC, Kline RL, Douglas II, Margolis RK (1987) Complex carbohydrate composition of large dense-cored vesicles from sympathetic nerve. J Neurochem 49:1839–1844

    Article  PubMed  CAS  Google Scholar 

  115. Geisler D, Martinek A, Margolis RU, Margolis RK, Skrivanek JA, Ledeen R, Konig P, Winkler H (1977) Composition and biogenesis of complex carbohydrates of ox adrenal chromaffin granules. Neuroscience 2:685–693

    Article  Google Scholar 

  116. Saito M, Sugiyama K (2002) Characterization of nuclear gangliosides in rat brain: concentration, composition, and developmental changes. Arch Biochem Biophys 398:153–159

    Article  PubMed  CAS  Google Scholar 

  117. Wu G, Lu Z-H, Ledeen RW (1995) Induced and spontaneous neritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci 15:3739–3746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kiebish MA, Han X, Cheng H, Lunceford A, Clarke CF, Moon H et al (2008) Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J Neurochem 106:299–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Rippo MR, Malisan F, Ravagnan L, Tomassini B, Condo I, Costantini P et al (2000) GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 14:2047–2054

    Article  PubMed  CAS  Google Scholar 

  120. Wang J, Wu G, Miyagi T, Lu Z-H, Ledeen RW (2009) Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J Neurochem 111:547–554

    Article  PubMed  CAS  Google Scholar 

  121. Ravichandra B, Joshi PG (1999) Regulation of transmembrane signaling by ganglioside GM1: interaction of anti-GM1 with neuro2a cells. J Neurochem 73:557–567

    Article  PubMed  CAS  Google Scholar 

  122. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J et al (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membrane links ER stress to Ca-dependent mitochondrial apoptosis. Mol Cell 36:500–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nowycky MC, Wu G, Ledeen RW (2014) Glycobiology of ion transport in the nervous system. In: Yu RK, Schengrund C-L (eds) Glycobiology of the Nervous System. Springer, New York, pp 321–342

    Google Scholar 

  124. Leon A, Facci L, Toffano G, Sonnino S, Tettamanti G (1981) Activation of (Na+, K+)-ATPase by nanomolar concentations of GM1 ganglioside. J Nerochem 37:350–357

    Article  CAS  Google Scholar 

  125. Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K et al (2007) Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27:3956–3967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Qiao GF, Cheng ZF, Huo R, Sui XH, Lu YJ, Li BY (2008) GM1 ganglioside contributes to retain the neuronal conduction and neuronal excitability in visceral and baroreceptor afferents. J Neurochem 106:1637–1645

    Article  PubMed  CAS  Google Scholar 

  127. Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, Hirata K et al (2007) Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55:746–757

    Article  PubMed  Google Scholar 

  128. de Erausquin GA, Manev H, Guidotti A, Costa E, Brooker G (1990) Gangliosides normalize distorted single-cell intracellular free Ca dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci U S A 87:8017–8021

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wu G, Xie X, Lu Z-H, Ledeen RW (2001) Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci U S A 98:307–312

    Article  PubMed  CAS  Google Scholar 

  130. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B et al (2000) Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349(1):343–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wu G, Ledeen RW (1991) Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase: putative role of GM1 ganglioside in differentiation. J Neurochem 56:95–104

    Article  PubMed  CAS  Google Scholar 

  132. Fang Y, Wu G, Xie X, Lu Z-H, Ledeen RW (2000) Endogenous GM1 gangliioside of the plasma membrane promotes neuritogenesis by two mechanisms. Neurochem Res 25:931–940

    Article  PubMed  CAS  Google Scholar 

  133. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Kappagantula S, Andrews MR, Cheah M, Abad-Rodriguez J, Dotti CG, Fawcett JW (2014) Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J Neurosci 34:2477–2492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wu G, Lu Z-H, Nakamura K, Spray DC, Ledeen RW (1996) Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: modulation of intracellular calcium by GM1 ganglioside. J Neurosci Res 44:243–254

    Article  PubMed  CAS  Google Scholar 

  136. Milani D, Minozzi MC, Petrelli L, Guidolin D, Skaper SD, Spoerri PE (1992) Interaction of ganglioside GM1 with the B subunit of cholera toxin modulates intracellular free calcium in sensory neurons. J Neurosci Res 33:466–475

    Article  PubMed  CAS  Google Scholar 

  137. Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 integrin initiates neurite outgrowth. J Neurosci 27:7447–7458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wang J, Lu Z-H, Gabius H-J, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  PubMed  CAS  Google Scholar 

  139. Ledeen RW, Wu G, Andre S, Bleich D, Huet G, Kaltner H et al (2012) Beyond glycoproteins as galectin-counterreceptors: tumor-effector cell growth control via ganglioside GM1. Ann N Y Acad Sci 1253:206–221

    Article  PubMed  CAS  Google Scholar 

  140. Xie X, Wu G, Lu Z-H, Ledeen RW (2002) Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81:1185–1195

    Article  PubMed  CAS  Google Scholar 

  141. Burette A, Rockwood JM, Strehler EE, Weinberg RJ (2003) Isoform-specific distribution of the plasma membrane Ca2+ ATPase in the rat brain. J Comp Neurol 467:464–476

    Article  PubMed  CAS  Google Scholar 

  142. Zhao Y, Fan X, Yang F, Zhang X (2004) Gangliosides modulate the activity of the plasma membrane Ca(2+)-ATPase from porcine brain synaptosomes. Arch Biochem Biophys 427:204–212

    Article  PubMed  CAS  Google Scholar 

  143. Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A et al (2014) Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase. Biochim Biophys Acta Biomembr 1838:1255–1265

    Article  CAS  Google Scholar 

  144. Tessitore A, del P Martin M, Sano R, Ma Y, Mann L, Ingrassia A et al (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766

    Article  PubMed  CAS  Google Scholar 

  145. d’Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Diff 13:404–414

    Article  CAS  Google Scholar 

  146. Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with butyldeoxynojirimycin. J Biol Chem 278(32):29496–29501

    Article  PubMed  CAS  Google Scholar 

  147. Wang Y, Tsui Z, Yang F (1999) Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum Ca2+-ATPase. FEBS Lett 457:144–148

    Article  PubMed  CAS  Google Scholar 

  148. Wu G, Lu Z-H, Xie X, Ledeen RW (2004) Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: rescue by GM1 and LIGA20. Glycoconj J 21:305–313

    Article  PubMed  CAS  Google Scholar 

  149. Wu G, Xie X, Lu Z-H, Ledeen RW (2009) Sodium-calcium exchanger complexed with GM1 ganglioside in the nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci U S A 106:10829–10834

    Article  PubMed  PubMed Central  Google Scholar 

  150. Galva C, Artigas P, Gatto C (2012) Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci 125:6137–6147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Xie X, Wu G, Lu Z-H, Rohowsky-Kochan C, Ledeen RW (2004) Presence of sodium-calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: nature of the exchanger-GM1 interaction. Neurochem Res 29:2135–2146

    Article  PubMed  CAS  Google Scholar 

  152. Xie X, Wu G, Ledeen RW (2004) C6 cells express a sodium-calcium exchanger/GM1 complex in the nuclear enveklope but have no exchanger in the plasma membrane: comparison to astrocytes. J Neurosci Res 76:363–357

    Article  PubMed  CAS  Google Scholar 

  153. Kaucic K, Liu Y, Ladisch S (2006) Modulation of growth factor signaling by gangliosides: positive or negative? Methods Enzymol 417:168–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Rusnati M, Tanghetti E, Urbinati C, Tulipano G, Marchesini S, Ziche M, Presta M (1999) Interaction of fibroblast growth factor-2 (FGF-2) with free gsangliosides: biochemical characterization and biological consequences in endothelial cell cultures. Mol Biol Cell 10:313–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Rusnati M, Urbinati C, Tanghetti E, Dell’Era P, Lortat-Jacob H, Presta M (2002) Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci U S A 99:4367–4372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Boldin SA, Futerman ASH (2000) Up-reguloation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem 275:9905–9909

    Article  PubMed  CAS  Google Scholar 

  157. Nojiri H, Stroud M, Hakomori S-I (1991) A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity. J Biol Chem 266:4531–4537

    PubMed  CAS  Google Scholar 

  158. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Schengrund C-L (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40:397–406

    Article  PubMed  CAS  Google Scholar 

  160. Shen KF, Crain SM (1989) Dual modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res 491:227–242

    Article  PubMed  CAS  Google Scholar 

  161. Jin W, Lee NM, Loh HH, Thayer SA (1992) Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma x glioma hybrid NG108-15 cells. Mol Pharm 42:1083–1089

    CAS  Google Scholar 

  162. Shen KF, Crain SM (1990) Cholera toxin B-subunit blocks opioid excitatory effects on sensory neuron action potentials indicating the GM1 ganglioside may regulate Gs-linked opioid receptor functions. Brain Res 531:1–7

    Article  PubMed  CAS  Google Scholar 

  163. Wu G, Lu Z-H, Ledeen RW (1997) Interaction of δ-opioid receptor with GM1 ganglioside: conversion from inhibitory to excitatory mode. Mol Brain Res 44:341–346

    Article  PubMed  CAS  Google Scholar 

  164. Saito M, Frielle T, Benovic JL, Ledeen RW (1995) Modulation by GM1 ganglioside of β1-adrenergic receptor-induced cyclic AMP formation in Sf9 cells. Biochim Biophys Acta 1267:1–5

    Article  PubMed  Google Scholar 

  165. Wu G, Lu Z-H, Ledeen RW (1996) GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in Neuro-2A cells. Glycoconj J 13:235–239

    Article  PubMed  Google Scholar 

  166. Lundius EG, Stroth N, Vukojevic V, Terenius L, Svenningsson P (2012) Functional GPR37 trafficking protects against toxicity induced by 6-OHDA, MPP+ or rotenone in a catecholaminergic cell line. J Neurochem 124:410–417

    Article  PubMed  CAS  Google Scholar 

  167. Lundius EG, Vukojevic V, Hertz E, Stroth N, Cederlund A, Hiraiwa M et al (2014) GPR37 protein trafficking to the plasma membrane regulated by prosaposin and GM1 gangliosides promotes cell viability. J Biol Chem 289:4660–4673

    Article  PubMed  CAS  Google Scholar 

  168. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–5091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptor TrkA. J Neurochem 65:347–354

    Article  PubMed  CAS  Google Scholar 

  170. Pitto M, Mutoh T, Kuriyama M, Ferraretto A, Palestini P, Masserini M (1998) Influence of endogenous GM1 ganglioside on TrkB activity in cultured neurons. FEBS Lett 439:93–96

    Article  PubMed  CAS  Google Scholar 

  171. Mutoh T, Hamano T, Tokuda A, Kuriyama M (2000) Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells). Glycoconj J 17:233–237

    Article  PubMed  CAS  Google Scholar 

  172. Mutoh T, Hamano T, Yano S, Koga H, Yamamoto H, Furukawa K, Ledeen RW (2002) Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem Res 27:801–806

    Article  PubMed  CAS  Google Scholar 

  173. Volk BW, Aronson SM (eds) (1972) Sphingolipids, sphingolipidoses and allied disorders. Advances in experimental medicine and biology, vol 19. Plenum, London

    Google Scholar 

  174. Kolter T (2012) Ganglioside Biochemistry. ISRN Biochem 2012(506160):1–36

    Article  CAS  Google Scholar 

  175. Ceccarelli B, Aporti F, Finesso M (1976) Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation. Adv Exp Med Biol 71:275–293

    Article  PubMed  CAS  Google Scholar 

  176. Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK (eds) (1988) New trends in ganglioside research. Neurochemical and neuroregenerative aspects. Fidia research series, vol 14. Liviana Press, Padova

    Google Scholar 

  177. Saito M, Saito M, Berg MJ, Guidotti A, Marks N (1999) Gangliosides attenuate ethanol-induced apoptosis in rat cerebellar granule neurons. Neurochem Res 24:1107–1115

    Article  PubMed  CAS  Google Scholar 

  178. Kidd SK, Mettil W, Anderson DW, Schneider JS (2012) Ganglioside regulation in human substantia nigra and its relation to Parkinson’s disease. Program no. 754.16. 2012 Neuroscience meeting planner. Society for Neuroscience, New Orleans. Online: 2012

    Google Scholar 

  179. Jellinger KA (2011) Synuclein deposition and non-motor symptoms in Parkinson disease. J Neurol Sci 310:107–111

    Article  PubMed  CAS  Google Scholar 

  180. Lang AE (2011) A critical appraisal of the premotor symptoms of Parkinson’s disease: clinical features and detection strategies. Mov Disord 26:775–783

    Article  PubMed  Google Scholar 

  181. Halliday GM, Barker RA, Rowe DB (eds) (2011) Non-dopamine Lesions in Parkinson’s disease. Oxford University Press, Oxford

    Google Scholar 

  182. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983) GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261:163–166

    Article  PubMed  CAS  Google Scholar 

  183. Hadjiconstantinou M, Rossetti ZL, Paxton RC, Neff NH (1986) Administration of GM1 ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology 25:1075–1077

    Article  PubMed  CAS  Google Scholar 

  184. Schneider JS, Yuwiler A (1989) GM1 ganglioside treatment promotes recovery of striatal dopamine concentrations in the mouse model of MPTP-induced parkinsonism. Exp Neurol 105:177–183

    Article  PubMed  CAS  Google Scholar 

  185. Tilson HA, Harry GJ, Nanry K, Hudson PM, Hong JS (1988) Ganglioside interactions with the dopaminergic system of rats. J Neurosci Res 19:88–93

    Article  PubMed  CAS  Google Scholar 

  186. Schneider JS, Pope A, Simpson K, Taggart J, Smith MG, DiStefano L (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256:843–846

    Article  PubMed  CAS  Google Scholar 

  187. Herrero MT, Perez-Otano I, Oset C, Kastner A, Hirsch EC, Agid Y et al (1993) GM-1 ganglioside promotes the recovery of surviving midbrain dopaminergic neurons in MPTP-treated monkeys. Neuroscience 56:965–972

    Article  PubMed  CAS  Google Scholar 

  188. Schneider JS, DiStefano L (1995) Response of the damaged dopamine system to GM1 and semisynthetic gangliosides: effects of dose and extent of lesion. Neuropharmacology 34:489–493

    Article  PubMed  CAS  Google Scholar 

  189. Schneider JS, Sendek S, Daskalakis C, Cambi F (2010) GM1 ganglioside in Parkinson’s disease: results of a five-year open study. J Neurol Sci 292:45–51

    Article  PubMed  CAS  Google Scholar 

  190. Schneider JS, Gollomp SM, Sendek S, Colcher A, Cambi F, Du W (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 324:140–148

    Article  PubMed  CAS  Google Scholar 

  191. Wu G, Lu Z-H, Kulkarni N, Amin R, Ledeen RW (2011) Mice lacking major brain gangliosides develop parkinsonism. Neurochem Res 36:1706–1714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absollute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  PubMed  CAS  Google Scholar 

  193. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  194. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    Article  CAS  PubMed  Google Scholar 

  195. Braak H, Del Tredici K, Rub U, de Vos RAI, Steur ENHJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  196. Schneider JS (2014) Gangliosides and glycolipids in neurodegenerative disorders. In: Yu RK, Schengrund C-L (eds) Glycobiology of the nervous system. Advances in neurobiology, vol 9. Springer, New York, pp 449–464

    Google Scholar 

  197. Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo S-H et al (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutation. Brain 138:2648–2658

    Article  PubMed  PubMed Central  Google Scholar 

  198. Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH (2011) Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Mov Disord 26:1593–1604

    Article  PubMed  Google Scholar 

  199. Roze E, Paschke E, Lopez N, Eck T, Yoshida K, Maurel-Olivier A et al (2005) Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord 20:1366–1369

    Article  PubMed  Google Scholar 

  200. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  201. Lulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’s disease and Down syndrome. Trends Pharm Sci 35:338–348

    Article  CAS  Google Scholar 

  202. Svennerholm L, Gottfries C-G (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early onset (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  PubMed  CAS  Google Scholar 

  203. Brooksbank BW, McGovern J (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol 11:143–156

    Article  PubMed  CAS  Google Scholar 

  204. Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L (1989) Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 46:398–401

    Article  PubMed  CAS  Google Scholar 

  205. Valdes-Gonzalez T, Goto-Inoue N, Hirano W, Ishiyama H, Hayasaka T, Setou M, Taki T (2011) New approach for glyco-and lipidomics – molecular scanning of human brain gangliosides by TLC-Blot and MALDI-QIT-TOF MS. J Neurochem 116:678–683

    Article  PubMed  CAS  Google Scholar 

  206. Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G (1991) Human brain gangliosides in development, aging and disease. Int J Dev Biol 35:289–295

    PubMed  CAS  Google Scholar 

  207. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease – a review. J Lipid Res 49:1157–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M et al (2004) A seed for Alzheimer amyloid in the brain. J Neurosci 24:4894–4902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Yanagisawa K (2007) Role of gangliosides in Alzheimer’s disease. Biochim Biophys Acta 1768:1943–1951

    Article  PubMed  CAS  Google Scholar 

  210. Yanagisawa M, Ariga T, Yu RK (2010) Cytotoxic effects of GM1 ganglioside and amyloid β-peptide on mouse embryonic neural stem cells. ASN Neuro 2:e00029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Svennerholm L, Brane G, Karlsson I, Lekman A, Ramstrom I, Wikkelso C (2002) Alzheimer disease – effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dement Geriatr Cogn Disord 14:128–136

    Article  PubMed  CAS  Google Scholar 

  212. Kreutz F, Frozza RL, Breier AC, de Oliveira VA, Horn AP, Pettenuzzo LF et al (2011) Amyloid-β induced toxicity involves ganglioside expression and is sensitive to GM1 neuroprotective action. Neurochem Int 59:648–655

    Article  PubMed  CAS  Google Scholar 

  213. Ariga T, Yu RK (1999) GM1 inhibits amyloid beta-protein-induced cytokine release. Neurochem Res 24:219–226

    Article  PubMed  CAS  Google Scholar 

  214. Sokolova TV, Zakharova IO, Furaev VV, Rychkova MP, Avrova NF (2007) Neuroprotective effect of ganglioside GM1 on the cytotoxic action of hydrogen perkoxide and amyloid β-peptide in PC12 cells. Neurochem Res 32:1302–1313

    Article  PubMed  CAS  Google Scholar 

  215. Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS et al (2009) Elimination of GD3 synthase improves memory and reduces amyloid-β beta plaque load in transgenic mice. Neurobiol Aging 30:1777–1791

    Article  PubMed  CAS  Google Scholar 

  216. Copani A, Melchiorri D, Caricasole A, Martini F, Sale P, Carnevale R et al (2002) β-amyloid-induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neurosci 22:3963–3968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Galpern WSR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59:449–458

    Article  PubMed  CAS  Google Scholar 

  218. Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG et al (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27:265–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Maglione V, Marchi P, Di Pardo A, Lingrell S, Horkey M, Tidmarsh E, Sipione S (2010) Impaired ganglioside metabolism in Huntington’s disease and neuroprotective role of GM1. J Neurosci 30:4072–4080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J et al (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A 109:3528–3533

    Article  PubMed  PubMed Central  Google Scholar 

  221. Boukhris A, Schule R, Loureiro JL, Lourenco CM, Mundwiller E, Gonzalwz MA et al (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Gen 93:118–123

    Article  CAS  Google Scholar 

  222. Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234

    Article  CAS  PubMed  Google Scholar 

  223. Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DCA, Reinkensmeier G (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Gen 36:1225–1229

    Article  CAS  Google Scholar 

  224. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M et al (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106:9483–9488

    Article  PubMed  PubMed Central  Google Scholar 

  225. Niimi K, Nishioka C, Miyamoto T, Takahashi E, Miyoshi I, Itakura C, Yamashita T (2011) Impairment of neuropsychological behaviors in ganglioside GM3-knockout mice. Biochem Biophys Res Commun 406:524–528

    Article  PubMed  CAS  Google Scholar 

  226. Tell S (2012) Medical genetic research on the Amish: from genetic tourism to community health centers. Einstein J Biol Med 2012:18–24

    Google Scholar 

  227. Allende ML, Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glyconj J 31:613–622

    Article  CAS  Google Scholar 

  228. Itokazu Y, Tsai Y-T, Yu RK (2016) Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J. https://doi.org/10.1007/s10719–016–9719-6

  229. Sampson TR, Debellus JW, Thron T, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ledeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ledeen, R., Wu, G. (2018). Gangliosides of the Nervous System. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics