Skip to main content

Nuclear Magnetic Resonance of Gangliosides

  • Protocol
  • First Online:
Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

Abstract

Structure, conformation, and dynamics of sphingolipids can provide substantial help in better understanding sphingolipid–ligand interaction mechanisms. Both the oligosaccharide structure and the ceramide moiety of native glycosphingolipid can be established directly by NMR spectroscopic analysis without the necessity to resort to any other chemical or spectroscopic methods. NMR is a powerful technique to investigate interaction between small ligand, such as ganglioside, and membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

Cer:

Ceramide

COSY:

Correlation spectroscopy

DANTE:

Delays alternated by nutation for tailored excitation

Deac-GM1:

Neu-GM1

DEPT:

Distortionless enhancement by polarization transfer

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine

DMPE:

Dimyristoyl phosphatidylethanolamine

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol

DMPS:

Dimyristoyl phosphatidylserine

DMSO:

Dimethyl-d 6 -sulfoxide

DOSY:

Diffusion Ordered Spectroscopy

DPC:

Dodecylphosphocholine

DPC:

Dodecylphosphocholine-d38;

EDTA:

Ethylenediaminetetraacetic acid

FA:

Fatty acid

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

Glc:

Glucose

HMBC:

Heteronuclear Multiple Bond Correlation

HOHAHA:

Homonuclear Hartman Hahn

HSQC:

Heteronuclear Single Quantum Coherence

INEPT:

Insensitive nuclei enhanced by polarization transfer

MD:

Molecular dynamics

MINSY:

Mixing irradiation during NOESY

MLEV:

Malcolm LEVitt's decoupling cycle

Neu5Ac:

N-acetylneuraminic acid

Neu5Gc:

Neu5Gc N-glycolylneuraminic acid

NMR:

Nuclear Magnetic Resonance

NOE:

Nuclear Overhauser effect

NOESY:

NOE correlated spectroscopy

PCS:

Pseudocontact shift

PFG:

Pulsed Field Gradient

PFG-SE:

Pulsed Field Gradient Spin Echo

PRE:

Paramagnetic Relaxation Enhancement

ROE:

Rotating-frame nuclear Overhauser effect

ROESY:

Rotating-frame Overhauser Effect Spectroscopy

Sph:

Sphingosine

STD:

Saturation transfer difference

STEP:

Selective TOCSY edited preparation

SUV:

Small Unilamellar Vesicles

TOCSY:

Total correlated spectroscopy

TPPI:

Time proportional phase incrementation

References

  1. Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71(1):21–45

    Article  CAS  PubMed  Google Scholar 

  2. Eaton HL, Hakomori SI (1988) Conformation of micelle-bound gangliosides by 2D proton NMR spectroscopy. 195th ACS Natl Mtg, 91 CARB

    Google Scholar 

  3. Acquotti D, Poppe L, Dabrowski J, Von der Lieth CW, Sonnino S, Tettamanti G (1990) Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl-sulfoxide and in water dodecylphosphocholine solutions. J Am Chem Soc 112(21):7772–7778

    Article  CAS  Google Scholar 

  4. Poppe L, Van Halbeek H, Acquotti D, Sonnino S (1994) Carbohydrate dynamics at a micellar surface: Gd1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66(5):1642–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brocca P, Berthault P, Sonnino S (1998) Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface. Biophys J 74(1):309–318. https://doi.org/10.1016/S0006-3495(98)77788-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guéron M, Plateau P (2007) Water signal suppression in NMR of biomolecules. In: eMagRes. Wiley. doi:https://doi.org/10.1002/9780470034590.emrstm0590

  7. Sonnino S, Kirschner G, Ghidoni R, Acquotti D, Tettamanti G (1985) Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res 26(2):248–257

    PubMed  CAS  Google Scholar 

  8. Sonnino S, Cantù L, Corti M, Acquotti D, Kirschner G, Tettamanti G (1990) Aggregation properties of semisynthetic GM1 ganglioside (II3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids 56(1):49–57

    Article  CAS  PubMed  Google Scholar 

  9. Brocca P, Cantù L, Sonnino S (1995) Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5AcII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids 77(1):41–49

    Article  CAS  PubMed  Google Scholar 

  10. Brocca P, Acquotti D, Sonnino S (1993) 1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconj J 10(6):441–446

    Article  CAS  PubMed  Google Scholar 

  11. Poppe L, Van Halbeek H (1991) Nuclear-magnetic-resonance of hydroxyl and amido protons of oligosaccharides in aqueous-solution: evidence for a strong intramolecular hydrogen bond in sialic acid residues. J Am Chem Soc 113(1):363–365

    Article  CAS  Google Scholar 

  12. Morris GA, Freeman R (1978) Selective excitation in Fourier transform nuclear magnetic resonance. J Magn Reson 29(3):433–462. https://doi.org/10.1016/0022-2364(78)90003-3

    Article  CAS  Google Scholar 

  13. Gallo V, Intini N, Mastrorilli P, Latronico M, Scapicchio P, Triggiani M, Bevilacqua V, Fanizzi P, Acquotti D, Airoldi C, Arnesano F, Assfalg M, Benevelli F, Bertelli D, Cagliani LR, Casadei L, Cesare Marincola F, Colafemmina G, Consonni R, Cosentino C, Davalli S, De Pascali SA, D’Aiuto V, Faccini A, Gobetto R, Lamanna R, Liguori F, Longobardi F, Mallamace D, Mazzei P, Menegazzo I, Milone S, Mucci A, Napoli C, Pertinhez T, Rizzuti A, Rocchigiani L, Schievano E, Sciubba F, Sobolev A, Tenori L, Valerio M (2015) Performance assessment in fingerprinting and multi component quantitative NMR analyses. Anal Chem 87(13):6709–6717. https://doi.org/10.1021/acs.analchem.5b00919

    Article  PubMed  CAS  Google Scholar 

  14. Subramanian S, Bax A (1987) Generation of pure phase NMR subspectra for measurement of homonuclear coupling-constants. J Magn Reson 71(2):325–330

    CAS  Google Scholar 

  15. Sørensen OW, Rance M, Ernst RR (1984) z Filters for purging phase- or multiplet-distorted spectra. J Magn Reson 56(3):527–534. https://doi.org/10.1016/0022-2364(84)90317-2

    Article  Google Scholar 

  16. Sklenar V, Feigon J (1990) Simplification of DNA proton nuclear magnetic resonance spectra by homonuclear Hartmann-Hahn edited two-dimensional nuclear Overhauser enhancement spectroscopy. J Am Chem Soc 112(14):5644–5645

    Article  CAS  Google Scholar 

  17. Hu H, Bradley SA, Krishnamurthy K (2004) Extending the limits of the selective 1D NOESY experiment with an improved selective TOCSY edited preparation function. J Magn Reson 171(2):201–206. https://doi.org/10.1016/j.jmr.2004.08.018

    Article  PubMed  CAS  Google Scholar 

  18. Thrippleton MJ, Keeler J (2003) Elimination of zero-quantum interference in two-dimensional NMR spectra. Angew Chem Int Ed Engl 42(33):3938–3941. https://doi.org/10.1002/anie.200351947

    Article  PubMed  CAS  Google Scholar 

  19. Cano K, Thrippleton MJ, Keeler J, Shaka AJ (2004) Improved transient NOE buildups in coupled spin systems. 45th Experimental NMR Conference, Pacific Grove, USA

    Google Scholar 

  20. Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun 113(3):967–974

    Article  CAS  PubMed  Google Scholar 

  21. Hurd RE (1990) Gradient-enhanced spectroscopy. J Magn Reson 87(2):422–428

    CAS  Google Scholar 

  22. Bax A, Davis DG (1985) Mlev-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65(2):355–360

    CAS  Google Scholar 

  23. Rance M (1987) Improved techniques for homonuclear rotating-frame and isotropic mixing experiments. J Magn Reson 74(3):557–564

    CAS  Google Scholar 

  24. Zhao DZ, Fujiwara T, Nagayama K (1989) Suppression of off-resonance effects in 1D and 2D ROESY. J Magn Reson 81(3):628–630

    CAS  Google Scholar 

  25. Farmer BT, Brown LR (1987) The effect of resonance offset on the cross-relaxation rate in the rotating frame. J Magn Reson 72(1):197–202

    CAS  Google Scholar 

  26. Bax A (1988) Correction of cross-peak intensities in 2D spin-locked NOE spectroscopy for offset and Hartmann-Hahn effects. J Magn Reson 77(1):134–147

    Article  CAS  Google Scholar 

  27. Davis DG (1989) Elimination of baseline distortions and minimization of artifacts from phased 2D NMR spectra. J Magn Reson 81(3):603–607

    CAS  Google Scholar 

  28. Marion D, Bax A (1988) Baseline distortion in real-fourier-transform NMR spectra. J Magn Reson 79(2):352–356

    Google Scholar 

  29. Boros S, Batta G (2016) Offset-compensated and zero-quantum suppressed ROESY provides accurate 1H-1H distances in small to medium-sized molecules. Magn Reson Chem 54(12):947–952

    Article  CAS  PubMed  Google Scholar 

  30. Altona C, Haasnoot CAG (1980) Prediction of anti and gauche vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings. Org Magn Reson 13(6):417–429. https://doi.org/10.1002/mrc.1270130606

    Article  CAS  Google Scholar 

  31. Haasnoot CAG, de FAAM L, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities. An empirical generalization of the Karplus equation. Tetrahedron 36(19):2783–2792 https://doi.org/10.1016/0040-4020(80)80155-4

    Article  CAS  Google Scholar 

  32. Robinson PT, Pham TN, Uhrin D (2004) In phase selective excitation of overlapping multiplets by gradient-enhanced chemical shift selective filters. J Magn Reson 170(1):97–103

    Article  CAS  PubMed  Google Scholar 

  33. Neuhaus D, Williamson MP (1989) The nuclear overhauser effect in structural and conformational analysis. VCH, New York

    Google Scholar 

  34. Dabrowski J (1987) Application of two-dimensional NMR methods in the structural analysis of oligosaccharides and other complex carbohydrates. In: Croasmun WR, Carlson RMK (eds) Two-dimensional NMR spectroscopy. VCH, NY, pp 349–386

    Google Scholar 

  35. Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106(3):811–813 https://doi.org/10.1021/ja00315a069

    Article  CAS  Google Scholar 

  36. Dabrowski J, Poppe L (1989) Hydroxyl and amido groups as long-range sensors in conformational analysis by nuclear Overhauser enhancement: a source of experimental evidence for conformational flexibility of oligosaccharides. J Am Chem Soc 111(4):1510–1511 https://doi.org/10.1021/ja00186a063

    Article  CAS  Google Scholar 

  37. Stott K, Keeler J, Van QN, Shaka AJ (1997) One-dimensional NOE experiments using pulsed field gradients. J Magn Reson 125(2):302–324. https://doi.org/10.1006/jmre.1997.1110

    Article  CAS  Google Scholar 

  38. Stonehouse J, Adell P, Keeler J, Shaka AJ (1994) Ultrahigh-quality NOE spectra. J Am Chem Soc 116(13):6037–6038. https://doi.org/10.1021/ja00092a092

    Article  CAS  Google Scholar 

  39. Boudot D, Roumestand C, Toma F, Canet D (1990) Pseudo-3D NMR of proteins with selective excitation by DANTE-Z. One-dimensional TOCSY-NOESY experiment. J Magn Reson 90(1):221–227. https://doi.org/10.1016/0022-2364(90)90382-J

    Article  CAS  Google Scholar 

  40. Brocca P, Acquotti D, Sonnino S (1996) Nuclear Overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J 13(1):57–62

    Article  CAS  PubMed  Google Scholar 

  41. Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93(1):151–170. https://doi.org/10.1016/0022-2364(91)90036-S

    Article  CAS  Google Scholar 

  42. Willker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn Reson Chem 31(3):287–292. https://doi.org/10.1002/mrc.1260310315

    Article  CAS  Google Scholar 

  43. Baumann H, Jansson P-E, Kenne L (1991) Synthesis and nuclear magnetic resonance studies of some L-fucosyl-containing disaccharides. J Chem Soc Perkin Trans 1(9):2229–2233. https://doi.org/10.1039/P19910002229

    Article  Google Scholar 

  44. Bock K, Brignole A, Sigurskjold BW (1986) Conformational dependence of 13C nuclear magnetic resonance chemical shifts in oligosaccharides. J Chem Soc Perkin Trans 2(11):1711–1713 https://doi.org/10.1039/P29860001711

    Article  Google Scholar 

  45. Lundqvist LC, Kaszowska M, Sandstrom C (2015) NMR study of the O-specific polysaccharide and the core oligosaccharide from the lipopolysaccharide produced by Plesiomonas shigelloides O24:H8 (strain CNCTC 92/89). Molecules 20(4):5729–5739. https://doi.org/10.3390/molecules20045729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Sonnino S, Acquotti D, Cantù L, Chigorno V, Valsecchi M, Casellato R, Masserini M, Corti M, Allevi P, Tettamanti G (1994) Synthesis and aggregative properties of GM1 ganglioside (IV3Neu5AcGgOse4Cer) containing D-(+)-2-hydroxystearic acid. Chem Phys Lipids 69(2):95–104

    Article  CAS  PubMed  Google Scholar 

  47. Poppe L, Dabrowski J, von der Lieth CW, Numata M, Ogawa T (1989) Solution conformation of sialosylcerebroside (GM4) and its NeuAc(α 2-3)gal beta sugar component. Eur J Biochem 180(2):337–342

    Article  CAS  PubMed  Google Scholar 

  48. Scarsdale JN, Prestegard JH, Yu RK (1990) NMR and computational studies of interactions between remote residues in gangliosides. Biochemistry 29(42):9843–9855. https://doi.org/10.1021/bi00494a014

    Article  PubMed  CAS  Google Scholar 

  49. Acquotti D, Fronza G, Ragg E, Sonnino S (1991) Three dimensional structure of GD1b and GD1b-monolactone gangliosides in dimethylsulphoxide: a nuclear Overhauser effect investigation supported by molecular dynamics calculations. Chem Phys Lipids 59(2):107–125

    Article  CAS  PubMed  Google Scholar 

  50. Levery SB (1991) 1H-NMR study of GM2 ganglioside: evidence that an interresidue amide-carboxyl hydrogen bond contributes to stabilization of a preferred conformation. Glycoconj J 8(6):484–492 https://doi.org/10.1007/bf00769848

    Article  CAS  PubMed  Google Scholar 

  51. Siebert HC, Reuter G, Schauer R, Von der Lieth CW, Dabrowski J (1992) Solution conformations of GM3 ganglioside containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. Biochemistry 31(30):6962–6971. https://doi.org/10.1021/bi00145a014

    Article  PubMed  CAS  Google Scholar 

  52. Acquotti D, Cantù L, Ragg E, Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225(1):271–288

    Article  CAS  PubMed  Google Scholar 

  53. Poppe L, Von der Lieth CW, Dabrowski J (1990) Conformation of the glycolipid globoside head group in various solvents and in the micelle-bound state. J Am Chem Soc 112(21):7762–7771. https://doi.org/10.1021/ja00177a042

    Article  CAS  Google Scholar 

  54. Klyne W, Prelog V (1960) Description of steric relationships across single bonds. Experientia 16(12):521–523. https://doi.org/10.1007/bf02158433

    Article  CAS  Google Scholar 

  55. Bernardi A, Raimondi L (1995) Conformational analysis of GM1 oligosaccharide in water solution with a new set of parameters for the Neu5Ac moiety. J Org Chem 60(11):3370–3377. https://doi.org/10.1021/jo00116a021

    Article  CAS  Google Scholar 

  56. Desvaux H, Berthault P, Birlirakis N, Goldman M (1994) Off-resonance ROESY for the study of dynamic processes. J Magn Reson Ser A 108(2):219–229. https://doi.org/10.1006/jmra.1994.1114

    Article  CAS  Google Scholar 

  57. Desvaux H, Berthault P, Birlirakis N, Goldman M, Piotto M (1995) Improved versions of off-resonance ROESY. J Magn Reson Ser A 113(1):47–52. https://doi.org/10.1006/jmra.1995.1054

    Article  CAS  Google Scholar 

  58. Breg J, Kroon-Batenburg LMJ, Strecker G, Montreuil J, Vliegenthart JFG (1989) Conformational analysis of the sialylα(2→3/6)N-acetyllactosamine structural element occurring in glycoproteins, by two-dimensional NOE 1H-NMR spectroscopy in combination with energy calculations by hard-sphere exo-anomeric and molecular mechanics force-field with hydrogen-bonding potential. Eur J Biochem 178(3):727–739 https://doi.org/10.1111/j.1432-1033.1989.tb14504.x

    Article  CAS  PubMed  Google Scholar 

  59. Yagi-Utsumi M, Kato K (2015) Structural and dynamic views of GM1 ganglioside. Glycoconj J 32(3–4):105–112. https://doi.org/10.1007/s10719-015-9587-5

    Article  PubMed  CAS  Google Scholar 

  60. Ying Z, Takumi Y, Koichi K (2013) New NMR tools for characterizing the dynamic conformations and interactions of oligosaccharides. Chem Lett 42(12):1455–1462. https://doi.org/10.1246/cl.130789

    Article  CAS  Google Scholar 

  61. Yamaguchi Y, Yamaguchi T, Kato K (2014) Structural analysis of oligosaccharides and glycoconjugates using NMR. In: Yu RK, Schengrund C-L (eds) Glycobiology of the nervous system. Springer, New York, NY, pp 165–183. https://doi.org/10.1007/978-1-4939-1154-7_8

    Chapter  Google Scholar 

  62. Erdelyi M, d’Auvergne E, Navarro-Vazquez A, Leonov A, Griesinger C (2011) Dynamics of the glycosidic bond: conformational space of lactose. Chem 17(34):9368–9376 https://doi.org/10.1002/chem.201100854

    Article  CAS  Google Scholar 

  63. Canales A, Mallagaray A, Perez-Castells J, Boos I, Unverzagt C, Andre S, Gabius HJ, Canada FJ, Jimenez-Barbero J (2013) Breaking pseudo-symmetry in multiantennary complex N-glycans using lanthanide-binding tags and NMR pseudo-contact shifts. Angew Chem Int Ed Engl 52(51):13789–13793. https://doi.org/10.1002/anie.201307845

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto S, Zhang Y, Yamaguchi T, Kameda T, Kato K (2012) Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun (Camb) 48(39):4752–4754. https://doi.org/10.1039/c2cc30353a

    Article  CAS  Google Scholar 

  65. Zhang Y, Yamamoto S, Yamaguchi T, Kato K (2012) Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules 17(6):6658–6671. https://doi.org/10.3390/molecules17066658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Zhang Y, Yamaguchi T, Satoh T, Yagi-Utsumi M, Kamiya Y, Sakae Y, Okamoto Y, Kato K (2015) Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. Adv Exp Med Biol 842:217–230. https://doi.org/10.1007/978-3-319-11280-0_14

    Article  PubMed  CAS  Google Scholar 

  67. Khatun UL, Gayen A, Mukhopadhyay C (2014) Capability of ganglioside GM1 in modulating interactions, structure, location and dynamics of peptides/proteins: biophysical approaches. Glycoconj J 31(6–7):435–447 https://doi.org/10.1007/s10719-014-9554-6

    Article  CAS  PubMed  Google Scholar 

  68. Viegas A, Manso J, Nobrega FL, Cabrita EJ (2011) Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J Chem Educ 88(7):990–994. https://doi.org/10.1021/ed101169t

    Article  CAS  Google Scholar 

  69. Chatterjee C, Majumder B, Mukhopadhyay C (2004) Pulsed-field gradient and saturation transfer difference NMR study of enkephalins in the ganglioside GM1 micelle. J Phys Chem B 108(22):7430–7436. https://doi.org/10.1021/jp037553r

    Article  CAS  Google Scholar 

  70. Chatterjee C, Mukhopadhyay C (2005) Binding and folding of melittin in the presence of ganglioside GM1 micelles. J Biomol Struct Dyn 23(2):183–192. https://doi.org/10.1080/07391102.2005.10507058

    Article  PubMed  CAS  Google Scholar 

  71. Chatterjee C, Mukhopadhyay C (2005) Interaction and structural study of kinin peptide bradykinin and ganglioside monosialylated 1 micelle. Biopolymers 78(4):197–205. https://doi.org/10.1002/bip.20278

    Article  PubMed  CAS  Google Scholar 

  72. Sørland GH, Aksnes D, Gjerdåker L (1999) A pulsed field gradient spin-echo method for diffusion measurements in the presence of internal gradients. J Magn Reson 137(2):397–401. https://doi.org/10.1006/jmre.1998.1670

    Article  PubMed  Google Scholar 

  73. Malliavin TE, Louis V, Delsuc MA (1998) The DOSY experiment provides insights into the protegrin-lipid interaction. J Chim Phys 95(2):178–186

    Article  CAS  Google Scholar 

  74. Morris GA (2007) Diffusion-ordered spectroscopy. In: eMagRes. Wiley. doi:https://doi.org/10.1002/9780470034590.emrstm0119.pub2

  75. Johnson CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34(3):203–256. https://doi.org/10.1016/S0079-6565(99)00003-5

    Article  CAS  Google Scholar 

  76. Hounsell EF (2006) NMR of carbohydrates, lipids and membranes. In: Webb GA (ed) nuclear magnetic resonance, vol 35. The Royal Society of Chemistry, p 362–388. https://doi.org/10.1039/9781847555236-00362

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Acquotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Acquotti, D., Mauri, L., Sonnino, S. (2018). Nuclear Magnetic Resonance of Gangliosides. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics