Skip to main content

Use of the LLNA:BrdU-ELISA for Skin Sensitization Hazard Assessment

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1803))

Abstract

Allergic contact dermatitis (ACD) continues to be an occupational and environmental health issue. Consequently, there is a need to employ predictive tests to reduce the incidence of skin sensitization leading to clinical manifestations of ACD. For more than a decade, the murine local lymph node assay (LLNA) has been the method of choice for the identification of skin sensitizers. While the original LLNA protocol has been extensively evaluated and subjected to exhaustive validation, the use of radioisotope (i.e., tritiated thymidine; 3HTdR) has discouraged utilization of this powerful assay in some countries. To promote further utilization of this method, the original LLNA protocol was refined to use 5-bromo-2′-deoxyuridine, a nonradioactive analog of 3HTdR. The LLNA:BrdU-ELISA has been reviewed, validated, and approved for use internationally, and its performance is regarded as equivalent to the traditional LLNA. Here, we provide guidance on how to perform and interpret data from this assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy K (ed) (2012) Janeway’s immunobiology, 8th edn. Garland, New York, p 601

    Google Scholar 

  2. Kimber I, Basketter DA, McFadden JP, Dearman RJ (2011) Characterization of skin sensitizing chemicals: a lesson learnt from nickel allergy. J Immunotoxicol 8:1–2

    Article  PubMed  Google Scholar 

  3. Jowsey IR, Basketter DA, Westmoreland C, Kimber I (2006) A future approach to measuring relative skin sensitising potency: a proposal. J Appl Toxicol 26:341–350

    Article  CAS  PubMed  Google Scholar 

  4. Kimber I, Dearman RJ, Basketter DA, Ryan CA, Gerberick GF (2002) The local lymph node assay: past, present and future. Contact Dermatitis 47:315–328

    Article  CAS  PubMed  Google Scholar 

  5. Basketter DA, Smith Pease CK, Patlewicz GY (2003) Contact allergy: the local lymph node assay for the prediction of hazard and risk. Clin Exp Dermatol 28:218–221

    Article  CAS  PubMed  Google Scholar 

  6. ICCVAM (1999) The Murine local lymph node assay: a test method for assessing the allergic contact dermatitis potential of chemicals/compounds. NIH Publication. No. 99–4494, Research Triangle Park, NC, pp 1–211

    Google Scholar 

  7. Sailstad DM, Hattan D, Hill RN, Stokes WS (2001) ICCVAM evaluation of the murine local lymph node assay. The ICCVAM review process. Regul Toxicol Pharmacol 34:249–257

    Article  CAS  PubMed  Google Scholar 

  8. Williams WC, Copeland C, Boykin E, Quell SJ, Lehmann DM (2015) Development and utilization of an ex vivo bromodeoxyuridine local lymph node assay protocol for assessing potential chemical sensitizers. J Appl Toxicol 35:29–40

    Article  CAS  PubMed  Google Scholar 

  9. Anderson SE, Siegel PD, Meade BJ (2011) The LLNA: a brief review of recent advances and limitations. J Allergy (Cairo) 2011:424203

    Google Scholar 

  10. Kimber I, Dearman RJ (1991) Investigation of lymph node cell proliferation as a possible immunological correlate of contact sensitizing potential. Food Chem Toxicol 29:125–129

    Article  CAS  PubMed  Google Scholar 

  11. Basketter DA, Gerberick GF, Kimber I (2007) The local lymph node assay: current position in the regulatory classification of skin sensitizing chemicals. Cutan Ocul Toxicol 26:293–301

    Article  CAS  PubMed  Google Scholar 

  12. Haneke KE, Tice RR, Carson BL, Margolin BH, Stokes WS (2001) ICCVAM evaluation of the murine local lymph node assay. Data analyses completed by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods. Regul Toxicol Pharmacol 34:274–286

    Article  CAS  PubMed  Google Scholar 

  13. Ryan CA, Chaney JG, Kern PS, Patlewicz GY, Basketter DA, Betts CJ, Dearman RJ, Kimber I, Gerberick GF (2008) The reduced local lymph node assay: the impact of group size. J Appl Toxicol 28:518–523

    Article  CAS  PubMed  Google Scholar 

  14. Jung KM, Bae IH, Kim BH, Kim WK, Chung JH, Park YH, Lim KM (2010) Comparison of flow cytometry and immunohistochemistry in non-radioisotopic murine lymph node assay using bromodeoxyuridine. Toxicol Lett 192:229–237

    Article  CAS  PubMed  Google Scholar 

  15. Idehara K, Yamagishi G, Yamashita K, Ito M (2008) Characterization and evaluation of a modified local lymph node assay using ATP content as a non-radio isotopic endpoint. J Pharmacol Toxicol Methods 58:1–10

    Article  CAS  PubMed  Google Scholar 

  16. Kojima H, Takeyoshi M, Sozu T, Awogi T, Arima K, Idehara K, Ikarashi Y, Kanazawa Y, Maki E, Omori T, Yuasa A, Yoshimura I (2011) Inter-laboratory validation of the modified murine local lymph node assay based on 5-bromo-2′-deoxyuridine incorporation. J Appl Toxicol 31:63–74

    Article  CAS  PubMed  Google Scholar 

  17. Piccotti JR, Knight SA, Gillhouse K, Lagattuta MS, Bleavins MR (2006) Evaluation of an ex vivo murine local lymph node assay: multiple endpoint comparison. J Appl Toxicol 26:333–340

    Article  CAS  PubMed  Google Scholar 

  18. Suda A, Yamashita M, Tabei M, Taguchi K, Vohr HW, Tsutsui N, Suzuki R, Kikuchi K, Sakaguchi K, Mochizuki K, Nakamura K (2002) Local lymph node assay with non-radioisotope alternative endpoints. J Toxicol Sci 27:205–218

    Article  CAS  PubMed  Google Scholar 

  19. Takeyoshi M, Iida K, Shiraishi K, Hoshuyama S (2005) Novel approach for classifying chemicals according to skin sensitizing potency by non-radioisotopic modification of the local lymph node assay. J Appl Toxicol 25:129–134

    Article  CAS  PubMed  Google Scholar 

  20. Takeyoshi M, Sawaki M, Yamasaki K, Kimber I (2003) Assessment of statistic analysis in non-radioisotopic local lymph node assay (non-RI-LLNA) with alpha-hexylcinnamic aldehyde as an example. Toxicology 191:259–263

    Article  CAS  PubMed  Google Scholar 

  21. Takeyoshi M, Yamasaki K, Yakabe Y, Takatsuki M, Kimber I (2001) Development of non-radio isotopic endpoint of murine local lymph node assay based on 5-bromo-2′-deoxyuridine (BrdU) incorporation. Toxicol Lett 119:203–208

    Article  CAS  PubMed  Google Scholar 

  22. Ulker OC, Ates I, Atak A, Karakaya A (2013) Evaluation of non-radioactive endpoints of ex vivo local lymph node assay-BrdU to investigate select contact sensitizers. J Immunotoxicol 10:1–8

    Article  CAS  PubMed  Google Scholar 

  23. Ulker OC, Atak A, Ates I, Karakaya A (2011) Evaluation of auricular lymph node cell lymphocyte proliferation and cytokine production as non-radioactive endpoints during murine contact allergy. J Immunotoxicol 8:131–139

    Article  CAS  PubMed  Google Scholar 

  24. Porstmann T, Ternynck T, Avrameas S (1985) Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 82:169–179

    Article  CAS  PubMed  Google Scholar 

  25. Basketter D, Kolle SN, Schrage A, Honarvar N, Gamer AO, van Ravenzwaay B, Landsiedel R (2012) Experience with local lymph node assay performance standards using standard radioactivity and nonradioactive cell count measurements. J Appl Toxicol 32:590–596

    Article  CAS  PubMed  Google Scholar 

  26. Hayes BB, Gerber PC, Griffey SS, Meade BJ (1998) Contact hypersensitivity to dicyclohexylcarbodiimide and diisopropylcarbodiimide in female B6C3F1 mice. Drug Chem Toxicol 21:195–206

    Article  CAS  PubMed  Google Scholar 

  27. Homey B, von Schilling C, Blumel J, Schuppe HC, Ruzicka T, Ahr HJ, Lehmann P, Vohr HW (1998) An integrated model for the differentiation of chemical-induced allergic and irritant skin reactions. Toxicol Appl Pharmacol 153:83–94

    Article  CAS  PubMed  Google Scholar 

  28. Woolhiser MR, Hayes BB, Meade BJ (1998) A combined murine local lymph node and irritancy assay to predict sensitization and irritancy potential of chemicals. Toxicol Methods 8:245–256

    Article  CAS  Google Scholar 

  29. Hayes BB, Meade BJ (1999) Contact sensitivity to selected acrylate compounds in B6C3F1 mice: relative potency, cross reactivity, and comparison of test methods. Drug Chem Toxicol 22:491–506

    Article  CAS  PubMed  Google Scholar 

  30. Ehling G, Hecht M, Heusener A, Huesler J, Gamer AO, van Loveren H, Maurer T, Riecke K, Ullmann L, Ulrich P, Vandebriel R, Vohr HW (2005) An European inter-laboratory validation of alternative endpoints of the murine local lymph node assay: first round. Toxicology 212:60–68

    Article  CAS  PubMed  Google Scholar 

  31. Hans-Werner V, Jurgen AH (2005) The local lymph node assay being too sensitive? Arch Toxicol 79:721–728

    Article  CAS  PubMed  Google Scholar 

  32. ICCVAM (2010) ICCVAM Test Method Evaluation Report. The Murine local lymph node assay: BrdU-ELISA, a nonradioactive alternative test method to assess the allergic contact dermatitis potential of chemicals and product. NIH Publication. No. 10–7552, Research Triangle Park, NC, pp 1–663

    Google Scholar 

  33. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition (2013) https://www.avma.org/KB/Policies/Pages/Euthanasia-Guidelines.aspx

  34. van Och FM, Slob W, de Jong WH, Vandebriel RJ, van Loveren H (2000) A quantitative method for assessing the sensitizing potency of low molecular weight chemicals using a local lymph node assay: employment of a regression method that includes determination of the uncertainty margins. Toxicology 146:49–59

    Article  PubMed  Google Scholar 

  35. Kimber I, Dearman RJ, Scholes EW, Basketter DA (1994) The local lymph node assay: developments and applications. Toxicology 93:13–31

    Article  CAS  PubMed  Google Scholar 

  36. Boverhof DR, Wiescinski CM, Botham P, Lees D, Debruyne E, Repetto-Larsay M, Ladics G, Hoban D, Gamer A, Remmele M, Wang-Fan W, Ullmann LG, Mehta J, Billington R, Woolhiser MR (2008) Interlaboratory validation of 1% pluronic l92 surfactant as a suitable, aqueous vehicle for testing pesticide formulations using the murine local lymph node assay. Toxicol Sci 105:79–85

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

This chapter has been reviewed by the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lehmann, D.M. (2018). Use of the LLNA:BrdU-ELISA for Skin Sensitization Hazard Assessment. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology, vol 1803. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8549-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8549-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8548-7

  • Online ISBN: 978-1-4939-8549-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics