Skip to main content

CD4+ T Cell Differentiation and Activation

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1803))

Abstract

The activation and differentiation of CD4+ T cells play a critical role in establishing and subsequently controlling protective adaptive immune responses. Flow cytometry is a powerful technique with which to assess the potential of xenobiotics to influence CD4+ T cell activation and differentiation. With flow cytometry, cells are stained with fluorochrome-conjugated antibodies and/or specific fluorescent probes to assess T cell activation, proliferation, effector cytokine production, and transcription factor expression. This technique allows for complex phenotypic analysis of tens to hundreds of thousands of individual cells very rapidly to assess the potential impact of a xenobiotic on CD4 effector differentiation and activation state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045

    Article  PubMed  CAS  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    PubMed  CAS  Google Scholar 

  3. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278(3):1910–1914. https://doi.org/10.1074/jbc.M207577200

    Article  PubMed  CAS  Google Scholar 

  4. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688. https://doi.org/10.1016/j.immuni.2006.06.002

    Article  PubMed  CAS  Google Scholar 

  5. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748. https://doi.org/10.1038/nature01355

    Article  PubMed  CAS  Google Scholar 

  6. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells. Nat Immunol 9(12):1347–1355. https://doi.org/10.1038/ni.1677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184(2):387–396

    Article  PubMed  CAS  Google Scholar 

  8. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  9. Thauland TJ, Koguchi Y, Wetzel SA, Dustin ML, Parker DC (2008) Th1 and Th2 cells form morphologically distinct immunological synapses. J Immunol 181(1):393–399

    Article  PubMed  CAS  Google Scholar 

  10. Stritesky GL, Yeh N, Kaplan MH (2008) IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 181(9):5948–5955

    Article  PubMed  CAS  Google Scholar 

  11. Lu KT, Kanno Y, Cannons JL, Handon R, Bible P, Elkahloun AG, Anderson SM, Wei L, Sun H, O'Shea JJ, Schwartzberg PL (2011) Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35(4):622–632. https://doi.org/10.1016/j.immuni.2011.07.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. https://doi.org/10.1038/ni.1867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C (2007) In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc 2(7):1789–1794. https://doi.org/10.1038/nprot.2007.258

    Article  PubMed  CAS  Google Scholar 

  14. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685. https://doi.org/10.1038/ni0706-681

    Article  PubMed  CAS  Google Scholar 

  15. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    Article  PubMed  CAS  Google Scholar 

  16. Vicetti Miguel RD, Maryak SA, Cherpes TL (2012) Brefeldin A, but not monensin, enables flow cytometric detection of interleukin-4 within peripheral T cells responding to ex vivo stimulation with Chlamydia trachomatis. J Immunol Methods 384(1–2):191–195. https://doi.org/10.1016/j.jim.2012.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Muris AH, Damoiseaux J, Smolders J, Cohen Tervaert JW, Hupperts R, Thewissen M (2012) Intracellular IL-10 detection in T cells by flowcytometry: the use of protein transport inhibitors revisited. J Immunol Methods 381(1–2):59–65. https://doi.org/10.1016/j.jim.2012.04.011

    Article  PubMed  CAS  Google Scholar 

  18. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  PubMed  CAS  Google Scholar 

  19. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596

    Article  PubMed  CAS  Google Scholar 

  20. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133. https://doi.org/10.1016/j.cell.2006.07.035

    Article  PubMed  CAS  Google Scholar 

  21. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31(3):457–468. https://doi.org/10.1016/j.immuni.2009.07.002

    Article  PubMed  CAS  Google Scholar 

  22. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341

    Article  PubMed  CAS  Google Scholar 

  23. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Wetzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reed, J., Wetzel, S.A. (2018). CD4+ T Cell Differentiation and Activation. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology, vol 1803. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8549-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8549-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8548-7

  • Online ISBN: 978-1-4939-8549-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics