Skip to main content

Flow Cytometry for the Immunotoxicologist

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1803))

Abstract

Assessing the immunotoxicity of xenobiotics by current regulatory testing has revealed compounds that can cause immunosuppression and stimulation. Flow cytometry is a cutting edge technique that can provide data on how toxicants can alter the quality and quantity of the immune response after exposure. Here we describe protocols for how to use flow cytometry to measure the immune response in multiple rodent organs (blood and lymphoid and nonlymphoid) as well as in novel models recently being utilized in the field of toxicology. These methods can be used for current testing and to determine mechanisms by which a xenobiotic can cause immunotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchmann K (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459. https://doi.org/10.3389/fimmu.2014.00459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Liu J, Cao X (2016) Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 13(6):711–721. https://doi.org/10.1038/cmi.2016.58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP (2016) How mouse macrophages sense what is going on. Front Immunol 7:204. https://doi.org/10.3389/fimmu.2016.00204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11(12):807–822. https://doi.org/10.1038/nri3095

    Article  PubMed  CAS  Google Scholar 

  5. Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27(2):75–84. https://doi.org/10.1016/j.smim.2015.03.009

    Article  PubMed  CAS  Google Scholar 

  6. Brown MA, Jones WK (2004) NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 9:1201–1217

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan BL, Li J, LaPres JJ, Pruett SB, Karmaus PW (2015) Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 145(2):214–232. https://doi.org/10.1093/toxsci/kfv060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lloyd CM, Saglani S (2010) Asthma and allergy: the emerging epithelium. Nat Med 16(3):273–274. https://doi.org/10.1038/nm0310-273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14(3):141–153. https://doi.org/10.1038/nri3608

    Article  PubMed  CAS  Google Scholar 

  10. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8(3):193–204. https://doi.org/10.1038/nri2275

    Article  PubMed  CAS  Google Scholar 

  11. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  12. McKee AS, Fontenot AP (2016) Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol 42:25–30. https://doi.org/10.1016/j.coi.2016.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Clayton GM, Wang Y, Crawford F, Novikov A, Wimberly BT, Kieft JS, Falta MT, Bowerman NA, Marrack P, Fontenot AP, Dai S, Kappler JW (2014) Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 158(1):132–142. https://doi.org/10.1016/j.cell.2014.04.048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McKee AS, Mack DG, Crawford F, Fontenot AP (2015) MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4(+) T-cell priming. Mucosal Immunol 8(6):1237–1247. https://doi.org/10.1038/mi.2015.14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Elmore SA (2012) Enhanced histopathology of the immune system: a review and update. Toxicol Pathol 40(2):148–156. https://doi.org/10.1177/0192623311427571

    Article  PubMed  Google Scholar 

  16. Luebke R (2012) Immunotoxicant screening and prioritization in the twenty-first century. Toxicol Pathol 40(2):294–299. https://doi.org/10.1177/0192623311427572

    Article  PubMed  CAS  Google Scholar 

  17. Corsini E, Oukka M, Pieters R, Kerkvliet NI, Ponce R, Germolec DR (2011) Alterations in regulatory T-cells: rediscovered pathways in immunotoxicology. J Immunotoxicol 8(4):251–257. https://doi.org/10.3109/1547691X.2011.598885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Koeper LM, Vohr HW (2009) Functional assays are mandatory for a correct prediction of immunotoxic properties of compounds in vitro. Food Chem Toxicol 47(1):110–118. https://doi.org/10.1016/j.fct.2008.10.025

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz A, Marti GE, Poon R, Gratama JW, Fernandez-Repollet E (1998) Standardizing flow cytometry: a classification system of fluorescence standards used for flow cytometry. Cytometry 33(2):106–114

    Article  CAS  PubMed  Google Scholar 

  20. Gore ER (2006) Immune function tests for hazard identification: a paradigm shift in drug development. Basic Clin Pharmacol Toxicol 98(4):331–335. https://doi.org/10.1111/j.1742-7843.2006.pto_374.x

    Article  PubMed  CAS  Google Scholar 

  21. Pieters R, Albers R (1999) Screening tests for autoimmune-related immunotoxicity. Environ Health Perspect 107(Suppl 5):673–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Myrick C, DiGuisto R, DeWolfe J, Bowen E, Kappler J, Marrack P, Wakeland EK (2002) Linkage analysis of variations in CD4:CD8 T cell subsets between C57BL/6 and DBA/2. Genes Immun 3(3):144–150. https://doi.org/10.1038/sj.gene.6363819

    Article  PubMed  CAS  Google Scholar 

  23. Laupeze B, Amiot L, Sparfel L, Le Ferrec E, Fauchet R, Fardel O (2002) Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells. J Immunol 168(6):2652–2658

    Article  CAS  PubMed  Google Scholar 

  24. Lankveld DP, Van Loveren H, Baken KA, Vandebriel RJ (2010) In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 598:401–423. https://doi.org/10.1007/978-1-60761-401-2_26

    Article  PubMed  CAS  Google Scholar 

  25. Boule LA, Winans B, Lawrence BP (2014) Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect 122(11):1201–1208. https://doi.org/10.1289/ehp.1408110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jin GB, Moore AJ, Head JL, Neumiller JJ, Lawrence BP (2010) Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol Sci 116(2):514–522. https://doi.org/10.1093/toxsci/kfq153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Teske S, Bohn AA, Hogaboam JP, Lawrence BP (2008) Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection. Toxicol Sci 102(1):89–99. https://doi.org/10.1093/toxsci/kfm282

    Article  PubMed  CAS  Google Scholar 

  28. Bezemer GF, Bauer SM, Oberdorster G, Breysse PN, Pieters RH, Georas SN, Williams MA (2011) Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. J Innate Immun 3(2):150–166. https://doi.org/10.1159/000321725

    Article  PubMed  CAS  Google Scholar 

  29. Yu YR, O'Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, Que L, Gunn MD (2016) A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One 11(3):e0150606. https://doi.org/10.1371/journal.pone.0150606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28. https://doi.org/10.1093/toxsci/kfn121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Luebke RW (2007) Nematodes as host resistance models for detection of immunotoxicity. Methods 41(1):38–47. https://doi.org/10.1016/j.ymeth.2006.06.016

    Article  PubMed  CAS  Google Scholar 

  32. Dowd WW (2012) Challenges for biological interpretation of environmental proteomics data in non-model organisms. Integr Comp Biol 52(5):705–720. https://doi.org/10.1093/icb/ics093

    Article  PubMed  Google Scholar 

  33. Garcia GR, Noyes PD, Tanguay RL (2016) Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther 161:11–21. https://doi.org/10.1016/j.pharmthera.2016.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sarmah S, Marrs JA (2016) Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int J Mol Sci 17(12). https://doi.org/10.3390/ijms17122123

    Article  CAS  PubMed Central  Google Scholar 

  35. MacRae CA, Peterson RT (2003) Zebrafish-based small molecule discovery. Chem Biol 10(10):901–908

    Article  CAS  PubMed  Google Scholar 

  36. Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS (2003) The zebrafish as a model organism to study development of the immune system. Adv Immunol 81:253–330

    PubMed  Google Scholar 

  37. Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379

    Article  CAS  PubMed  Google Scholar 

  38. Lam SH, Chua HL, Gong Z, Wen Z, Lam TJ, Sin YM (2002) Morphologic transformation of the thymus in developing zebrafish. Dev Dyn 225(1):87–94. https://doi.org/10.1002/dvdy.10127

    Article  PubMed  CAS  Google Scholar 

  39. Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SM, Paw BH, Zon LI, Lieschke GJ (2003) The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102(9):3238–3240. https://doi.org/10.1182/blood-2003-03-0966

    Article  PubMed  CAS  Google Scholar 

  40. Jin Y, Zheng S, Fu Z (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol 30(4–5):1049–1054. https://doi.org/10.1016/j.fsi.2011.02.001

    Article  PubMed  CAS  Google Scholar 

  41. Zhuang S, Zhang Z, Zhang W, Bao L, Xu C, Zhang H (2015) Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio). Aquat Toxicol 159:119–126. https://doi.org/10.1016/j.aquatox.2014.12.006

    Article  PubMed  CAS  Google Scholar 

  42. Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42. https://doi.org/10.1186/1471-213X-7-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80(6):1281–1288. https://doi.org/10.1189/jlb.0506346

    Article  PubMed  CAS  Google Scholar 

  44. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978. https://doi.org/10.1182/blood-2006-05-024075

    Article  PubMed  CAS  Google Scholar 

  45. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56. https://doi.org/10.1182/blood-2010-10-314120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Walton EM, Cronan MR, Beerman RW, Tobin DM (2015) The macrophage-specific promoter mfap4 allows live, long-term analysis of macrophage behavior during mycobacterial infection in zebrafish. PLoS One 10(10):e0138949. https://doi.org/10.1371/journal.pone.0138949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133(5):916–927. https://doi.org/10.1016/j.cell.2008.04.037

    Article  PubMed  CAS  Google Scholar 

  48. Bertrand JY, Kim AD, Teng S, Traver D (2008) CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135(10):1853–1862. https://doi.org/10.1242/dev.015297

    Article  PubMed  CAS  Google Scholar 

  49. Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 101(19):7369–7374. https://doi.org/10.1073/pnas.0402248101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890. https://doi.org/10.1126/science.1080280

    Article  PubMed  CAS  Google Scholar 

  51. Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, Schale SE, McGue C, Jacobsen BH, Doty A, Pao Y, Yang H, Chi NC, Magor BG, Traver D (2013) An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood 122(8):e1–e11. https://doi.org/10.1182/blood-2012-12-471029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kanther M, Sun X, Muhlbauer M, Mackey LC, Flynn EJ 3rd, Bagnat M, Jobin C, Rawls JF (2011) Microbial colonization induces dynamic temporal and spatial patterns of NF-kappaB activation in the zebrafish digestive tract. Gastroenterology 141(1):197–207. https://doi.org/10.1053/j.gastro.2011.03.042

    Article  PubMed  CAS  Google Scholar 

  53. Marjoram L, Alvers A, Deerhake ME, Bagwell J, Mankiewicz J, Cocchiaro JL, Beerman RW, Willer J, Sumigray KD, Katsanis N, Tobin DM, Rawls JF, Goll MG, Bagnat M (2015) Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci U S A 112(9):2770–2775. https://doi.org/10.1073/pnas.1424089112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nguyen-Chi M, Phan QT, Gonzalez C, Dubremetz JF, Levraud JP, Lutfalla G (2014) Transient infection of the zebrafish notochord with E. coli induces chronic inflammation. Dis Model Mech 7(7):871–882. https://doi.org/10.1242/dmm.014498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kymberly M. Gowdy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Espenschied, S.T., Tighe, R.M., Gowdy, K.M. (2018). Flow Cytometry for the Immunotoxicologist. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology, vol 1803. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8549-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8549-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8548-7

  • Online ISBN: 978-1-4939-8549-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics