Advertisement

HLA Typing pp 101-113 | Cite as

Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA

  • Yuxin Yin
  • James Lan
  • Qiuheng ZhangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1802)

Abstract

Next-generation sequencing (NGS) is increasingly recognized for its ability to deliver high-resolution and high-throughput HLA genotyping. As a result, there is active interest in applying NGS technologies to perform high volume bone marrow donor recruitment typing. Currently, buccal-based DNA specimens are considered a noninvasive and cost-effective method for registry typing. Here, we describe the feasibility of using long-range PCR and clonal sequencing by Illumina MiSeq to deliver unambiguous HLA typing on buccal-based donor recruitment samples.

Keywords

Human leukocyte antigen Next-generation sequencing Illumina MiSeq Donor recruitment samples Buccal extracted DNA 

Notes

Acknowledgment

This work was supported by NMDP for RFQ#C14-0040 and UCLA immunogenetics Center for HLA NGS-based development.

References

  1. 1.
    Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, Fernandez-Vina M, Flomenberg N, Horowitz M, Hurley CK, Noreen H, Oudshoorn M, Petersdorf E, Setterholm M, Spellman S, Weisdorf D, Williams TM, Anasetti C (2007) High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 110(13):4576–4583.  https://doi.org/10.1182/blood-2007-06-097386CrossRefPubMedGoogle Scholar
  2. 2.
    Flomenberg N, Baxter-Lowe LA, Confer D, Fernandez-Vina M, Filipovich A, Horowitz M, Hurley C, Kollman C, Anasetti C, Noreen H, Begovich A, Hildebrand W, Petersdorf E, Schmeckpeper B, Setterholm M, Trachtenberg E, Williams T, Yunis E, Weisdorf D (2004) Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 104(7):1923–1930.  https://doi.org/10.1182/blood-2004-03-0803CrossRefPubMedGoogle Scholar
  3. 3.
    Loupy A, Lefaucheur C, Vernerey D, Prugger C, Duong van Huyen JP, Mooney N, Suberbielle C, Fremeaux-Bacchi V, Mejean A, Desgrandchamps F, Anglicheau D, Nochy D, Charron D, Empana JP, Delahousse M, Legendre C, Glotz D, Hill GS, Zeevi A, Jouven X (2013) Complement-binding anti-HLA antibodies and kidney-allograft survival. N Engl J Med 369(13):1215–1226.  https://doi.org/10.1056/NEJMoa1302506CrossRefPubMedGoogle Scholar
  4. 4.
    Thorsby E, Lie BA (2005) HLA associated genetic predisposition to autoimmune diseases: genes involved and possible mechanisms. Transpl Immunol 14(3–4):175–182.  https://doi.org/10.1016/j.trim.2005.03.021CrossRefPubMedGoogle Scholar
  5. 5.
    Lan JH, Zhang Q (2015) Clinical applications of next-generation sequencing in histocompatibility and transplantation. Curr Opin Organ Transplant 20(4):461–467.  https://doi.org/10.1097/MOT.0000000000000217CrossRefPubMedGoogle Scholar
  6. 6.
    Shiina T, Suzuki S, Ozaki Y, Taira H, Kikkawa E, Shigenari A, Oka A, Umemura T, Joshita S, Takahashi O, Hayashi Y, Paumen M, Katsuyama Y, Mitsunaga S, Ota M, Kulski JK, Inoko H (2012) Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens 80(4):305–316.  https://doi.org/10.1111/j.1399-0039.2012.01941.xCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lange V, Bohme I, Hofmann J, Lang K, Sauter J, Schone B, Paul P, Albrecht V, Andreas JM, Baier DM, Nething J, Ehninger U, Schwarzelt C, Pingel J, Ehninger G, Schmidt AH (2014) Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15:63.  https://doi.org/10.1186/1471-2164-15-63CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, Levinson D, Fernandez-Vina MA, Davis RW, Davis MM, Mindrinos M (2012) High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A 109(22):8676–8681.  https://doi.org/10.1073/pnas.1206614109CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yin Y, Lan JH, Nguyen D, Valenzuela N, Takemura P, Bolon YT, Springer B, Saito K, Zheng Y, Hague T, Pasztor A, Horvath G, Rigo K, Reed EF, Zhang Q (2016) Application of high-throughput next-generation sequencing for HLA typing on buccal extracted DNA: results from over 10,000 donor recruitment samples. PLoS One 11(10):e0165810.  https://doi.org/10.1371/journal.pone.0165810CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351.  https://doi.org/10.1038/nrg.2016.49CrossRefPubMedGoogle Scholar
  11. 11.
    Rudney JD, Chen R (2006) The vital status of human buccal epithelial cells and the bacteria associated with them. Arch Oral Biol 51(4):291–298.  https://doi.org/10.1016/j.archoralbio.2005.09.003CrossRefPubMedGoogle Scholar
  12. 12.
    Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA, Erlich HA (2009) High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens 74(5):393–403.  https://doi.org/10.1111/j.1399-0039.2009.01345.xCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Barone JC, Saito K, Beutner K, Campo M, Dong W, Goswami CP, Johnson ES, Wang ZX, Hsu S (2015) HLA-genotyping of clinical specimens using Ion Torrent-based NGS. Hum Immunol 76(12):903–909.  https://doi.org/10.1016/j.humimm.2015.09.014CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lan JH, Yin Y, Reed EF, Moua K, Thomas K, Zhang Q (2015) Impact of three Illumina library construction methods on GC bias and HLA genotype calling. Hum Immunol 76(2–3):166–175.  https://doi.org/10.1016/j.humimm.2014.12.016CrossRefPubMedGoogle Scholar
  15. 15.
    Albrecht V, Zweiniger C, Surendranath V, Lang K, Schofl G, Dahl A, Winkler S, Lange V, Bohme I, Schmidt AH (2017) Dual redundant sequencing strategy: full-length gene characterisation of 1056 novel and confirmatory HLA alleles. HLA 90(2):79–87.  https://doi.org/10.1111/tan.13057CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carapito R, Radosavljevic M, Bahram S (2016) Next-generation sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies. Hum Immunol 77(11):1016–1023.  https://doi.org/10.1016/j.humimm.2016.04.002CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology & Laboratory MedicineUCLA Immunogenetics CenterLos AngelesUSA
  2. 2.Nephrology and Kidney TransplantationUniversity of British Columbia, Vancouver General HospitalVancouverCanada

Personalised recommendations