Skip to main content

Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1802))

Abstract

The aim of this review is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behcet’s disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reveille JD (2011) Epidemiology of Spondyloarthritis in North America. The American Journal of Medical Sciences 341(4):284–286

    Article  Google Scholar 

  2. Stolwijk C, Boonen A, Tubergen AV et al (2012) Epidemiology of Spondyloarthritis. Rheum Dis Clin N Am 38(3):441–476

    Article  Google Scholar 

  3. Rohekar S, Pope J (2010) Assessment of work disability in seronegative spondyloarthritis. Clin Exp Rheumatol 28:35–40

    PubMed  CAS  Google Scholar 

  4. Ramonda R, Marchesoni A, Carletto A et al (2016) Patient-reported impact of spondyloarthritis on work disability and working life: the ATLANTIS survey. Arthritis Res Ther 18:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mathieu A, Cauli A, Fiorillo MT et al (2008) HLA-B27 and ankylosing spondylitis geographic distribution versus malaria endemic: casual or causal liaison? Ann Rheum Dis 67:138–140

    Article  PubMed  CAS  Google Scholar 

  6. Richens JE, Prasad ML, Bhatia K et al (1986) Arthritis and HLA-B27 in Papua New Guinea. Br Med J (Clin Res Ed) 293(6556):1209

    Article  CAS  Google Scholar 

  7. Bhatia K, Richens J, Prasad ML, Koki G (1988) High prevalence of the haplotype HLA-A11, B27 in arthritis patients from the highlands of Papua New Guinea. Tissue Antigens 31(2):103–106

    Article  PubMed  CAS  Google Scholar 

  8. Gofton JP, Chalmers A, Price GE et al (1984) HL-A 27 and ankylosing spondylitis in B.C. Indians. J Rheumatol 11(5):572–573

    PubMed  CAS  Google Scholar 

  9. Boyer GS, Templin DW, Cornoni-Huntley JC et al (1994) Prevalence of spondyloarthropathies in Alaskan Eskimos. J Rheumatol 21(12):2292–2297

    PubMed  CAS  Google Scholar 

  10. Erdesz S, Shubin SV, Shoch BP et al (1994) Spondyloarthropathies in circumpolar populations of Chukotka (Eskimos and Chukchi): epidemiology and clinical characteristics. J Rheumatol 21(6):1101–1104

    PubMed  CAS  Google Scholar 

  11. Liu X, Li YR, Hu LH et al (2010) High frequencies of HLA-B27 in Chinese patients with suspected of ankylosing spondylitis. Rheumatol Int 30(10):1305–1309

    Article  PubMed  Google Scholar 

  12. Ho HH, Chen JY (2013) Ankylosing spondylitis: Chinese perspective, clinical phenotypes, and associated extra-articular systemic features. Curr Rheumatol Rep 15:344

    Article  PubMed  Google Scholar 

  13. Mustafa KN, Hammoudeh M, Khan MA (2012) HLA-B27 prevalence in Arab populations and among patients with ankylosing spondylitis. J Rheumatol 39:1675–1677

    Article  PubMed  Google Scholar 

  14. Khan MA (1987) Race-related differences in HLA association with ankylosing spondylitis and Reiter's disease in American blacks and whites. J Natl Med Assoc 70(1):41–42

    Google Scholar 

  15. Tanaka H, Akaza T, Juji T (1996) Report of the Japanese central bone marrow data center. Clin Transpl 10:139–144

    Google Scholar 

  16. Khan MA (1995) HLA-B27 and its subtypes in world populations. Curr Opin Rheumatol 7:263–269

    Article  PubMed  CAS  Google Scholar 

  17. Tikly M, Njobvu P, McGill P (2014) Spondyloarthritis in sub Saharan Africa. Curr Rheumatol Rep 16(6):421

    Article  PubMed  CAS  Google Scholar 

  18. Riecker HH, Neel JV, Test A (1950) The inheritance of spondylitis rhizomelique (ankylosing spondylitis) in the K. Family. Ann Intern Med 33(5):1254–1273

    Article  PubMed  CAS  Google Scholar 

  19. Schlosstein L, Terasaki PI, Bluestone R et al (1973) High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 288:704–706

    Article  PubMed  CAS  Google Scholar 

  20. Brewerton DA, Hart FD, Nicholls A et al (1973) Ankylosing spondylitis and HL-A 27. Lancet 1(7809):904–907

    Article  CAS  PubMed  Google Scholar 

  21. Akkoc N, Khan MA (2006) Epidemiology of Ankylosing spondylitis and related Spondyloarthropathies. In: Ankylosing spondylitis and the Spondyloarthropathies. Elsevier, Amsterdam, pp 117–131

    Google Scholar 

  22. Kopplin LJ, Mount G, Suhler EB (2016) Review for disease of the year: epidemiology of HLA-B27 associated ocular disorders. Ocul Immunol Inflamm 24(4):470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Queiro R, Morante I, Cabezas I et al (2016) HLA-B27 and psoriatic disease: a modern view of an old relationship. Rheumatology (Oxford) 55(2):221–229

    Article  CAS  Google Scholar 

  24. Braun JBM, Remlinger G (1998) Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis & Rheumatology 41(1):58–67

    Article  CAS  Google Scholar 

  25. Reveille JD, Hirsch R, Dillon CF et al (2012) The prevalence of HLA-B27 in the US: data from the US National Health and nutrition examination survey, 2009. Arthritis & Rheumatology 64(5):1407–1411

    Article  Google Scholar 

  26. Costantino F, Talpin A, Said-Nahal R et al (2013) Prevalence of Spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheum Dis 74(4):689–693

    Article  CAS  PubMed  Google Scholar 

  27. Nasution AR, Mardjuadi A, Suryadhana NG et al (1993) Higher relative risk of spondyloarthropathies among B27 positive Indonesian Chinese than native Indonesians. J Rheumatol 20:988–990

    CAS  PubMed  Google Scholar 

  28. van der Linden S, Valkenburg H, Cats A (1983) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br J Rheumatol 22(4 Suppl 2):18–19

    Article  PubMed  Google Scholar 

  29. Feltkamp TE (1995) Factors involved in the pathogenesis of HLA-B27 associated arthritis. Scand J Rheumatol 101:213–217

    Article  CAS  Google Scholar 

  30. Jaakkola E, Herzberg I, Laiho K et al (2006) Finnish HLA studies confirm the increased risk conferred by HLA-B27 homozygosity in ankylosing spondylitis. Ann Rheum Dis 65(6):775–780

    Article  PubMed  CAS  Google Scholar 

  31. van Der Linden SM, Valkenburg HA, De Jongh BM et al (1984) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 27(3):241–249

    Article  PubMed  Google Scholar 

  32. Kim TJ, Na KS, Lee HJ et al (2009) HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. Clin Exp Rheumatol 27:574–579

    PubMed  Google Scholar 

  33. Dangoria NS, DeLay ML, Kingsbury DJ et al (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277:23459–23468

    Article  PubMed  CAS  Google Scholar 

  34. Khan MA (2013) Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep 15:362

    Article  PubMed  CAS  Google Scholar 

  35. Frankenberger B, Breitkopf S, Albert E et al (1997) Routine molecular genotyping of HLA-B27 in spondyloarthropathies overcomes the obstacles of serological typing and reveals an increased B *2702 frequency in ankylosing spondylitis. J Rheumatol 24(5):899–903

    PubMed  CAS  Google Scholar 

  36. Lin J, Lü H, Feng C (1996) Ankylosing spondylitis and heterogeneity of HLA-B27 in Chinese. Chinese Medical Journal (Engl) 109(4):313–316

    CAS  Google Scholar 

  37. Taurog DJ (2007) The mystery of HLA B27: if it isn’t one thing, it’s another. Arthritis Rheum 56(8):2478–2481

    Article  PubMed  CAS  Google Scholar 

  38. Hill AVS, Allsop CEM, al KD (1991) HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet 337:640–642

    Article  PubMed  CAS  Google Scholar 

  39. Cauli A, Vacca A, Dessole G et al (2008) HLA-B* 2709 and lack of susceptibility to sacroiliitis: further support from the clinic. Clin Exp Rheumatol 26(6):1111–1112

    PubMed  CAS  Google Scholar 

  40. Yang T, Duan Z, Wu S et al (2014) Association of HLA-B27 genetic polymorphisms with ankylosing spondylitis susceptibility worldwide: a meta-analysis. Modern rheumatology / the Japan Rheumatism Association 24(1):150–161

    Article  CAS  Google Scholar 

  41. Lin H, Gong YZ (2017) Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: a meta-analysis. Rheumatol Int 37(8):1267–1280

    Article  PubMed  CAS  Google Scholar 

  42. Mear JP, Schreiber KL, Munz C et al (1999) Misfolding of HLA-B27 as a result of its B suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670

    PubMed  CAS  Google Scholar 

  43. Galocha B, López de Castro JA (2008) Folding of HLA-B27 subtypes is determined by the global effect of polymorphic residues and shows incomplete correspondence to ankylosing spondylitis. Arthritis & Rheumatology 58:401–412

    Article  CAS  Google Scholar 

  44. Sheehan NJ (2010) HLA-B27: what's new? Rheumatology (Oxford) 49:621–631

    Article  CAS  Google Scholar 

  45. Ebringer A (1983) The cross-tolerance hypothesis, HLA-B27 and ankylosing spondylitis. Br J Rheumatol 22(4 Suppl 2):53–66

    Article  PubMed  CAS  Google Scholar 

  46. Schwimmbeck PL, Oldstone MB (1988) Molecular mimicry between human leukocyte antigen B27 and Klebsiella. Consequences for spondyloarthropathies. Am J Med 85(6A):51–53

    Article  PubMed  CAS  Google Scholar 

  47. Lahesmaa R, Skurnik M, Vaara M et al (1991) Molecular mimickry between HLA B27 and Yersinia, Salmonella, Shigella and Klebsiella within the same region of HLA α1-helix. Clinical & Experimental Immunology 86:399–404

    Article  CAS  Google Scholar 

  48. Fielder M, Pirt SJ, Tarpey I et al (1995) Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae. FEBS Lett 369:243–248

    Article  PubMed  CAS  Google Scholar 

  49. Schittenhelm RB, Sian TC, Wilmann PG et al (2015) Revisiting the Arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA–B27 Allotypes. Arthritis & Rheumatology 67:702–713

    Article  CAS  Google Scholar 

  50. Hoentjen F, Tonkonogy SL, Qian BF et al (2007) CD4(+) T lymphocytes mediate colitis in HLA-B27 transgenic rats monoassociated with nonpathogenic Bacteroides vulgatus. Inflamm Bowel Dis 13:317–324

    Article  PubMed  Google Scholar 

  51. Rath HC, Wilson KH, Sartor RB (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 67:2969–2974

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Taurog JD, Richardson JA, Croft JT et al (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180(6):2359–2364

    Article  CAS  PubMed  Google Scholar 

  53. Costello ME, Elewaut D, Kenna TJ et al (2013) Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther 15:214

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lin P, Bach M, Asquith M et al (2014) HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9:e105684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rudwaleit M, van der Heijde D, Khan MA et al (2004) How to diagnose axial spondyloarthritis early. Ann Rheum Dis 63(5):535–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rudwaleit M, van der Heijde D, Landewe R et al (2009) The development of assessment of SpondyloArthritis international society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 68(6):777–783

    Article  PubMed  CAS  Google Scholar 

  57. Kirveskari J, Kellner H, Wuorela M et al (1997) False-negative serological HLA-B27 typing results may be due to altered antigenic epitopes and can be detected by polymerase chain reaction. Br J Rheumatol 36(2):185–189

    Article  PubMed  CAS  Google Scholar 

  58. Levering WH, Wind H, Sintnicolaas K et al (2003) Flow cytometric HLA-B27 screening: cross-reactivity patterns of commercially available anti-HLA-B27 monoclonal antibodies with other HLA-B antigens. Cytometry Part B Clinical Cytometry 54:28–38

    Article  CAS  PubMed  Google Scholar 

  59. Sieper J, Srinivasan S, Zamani O et al (2013) Comparison of two referral strategies for diagnosis of axial spondyloarthritis: the Recognising and diagnosing Ankylosing spondylitis reliably (RADAR) study. Ann Rheum Dis 72:1621–1627

    Article  PubMed  Google Scholar 

  60. Linssen A, Feltkamp TE (1988) B27 positive diseases versus B27 negative diseases. Ann Rheum Dis 47(5):431–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Feldtkeller E, Khan MA, van der Heijde D et al (2003) Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int 23:61–66

    PubMed  Google Scholar 

  62. Marzo-Ortega H, McGonagle D, O’Connor P et al (2009) Baseline and 1-year magnetic resonance imaging of the sacroiliac joint and lumbar spine in very early inflammatory back pain. Relationship between symptoms, HLA-B27 and disease extent and persistence. Ann Rheum Dis 68:1721–1727

    Article  PubMed  CAS  Google Scholar 

  63. Chung HY, Machado P, van der Heijde D et al (2011) HLA-B27 positive patients differ from HLA-B27 negative patients in clinical presentation and imaging: results from the DESIR cohort of patients with recent onset axial spondyloarthritis. Ann Rheum Dis 70:1930–1936

    Article  PubMed  Google Scholar 

  64. Khan MA, Kushner I, Braun WE (1977) Comparison of clinical features in HLA-B27 positive and negative patients with ankylosing spondylitis. Arthritis Rheum 20:909–912

    Article  PubMed  CAS  Google Scholar 

  65. Hamersma J, Cardon LR, Bradbury L et al (2001) Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheum 44:1396–1400

    Article  PubMed  CAS  Google Scholar 

  66. Bennett AN, McGonagle D, O'Connor P et al (2008) Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis & Rheumatology 58:3413–3418

    Article  CAS  Google Scholar 

  67. Freeston J, Barkham N, Hensor E et al (2007) Ankylosing spondylitis, HLA-B27 positivity and the need for biologic therapies. Joint Bone Spine 74(2):140–143

    Article  PubMed  CAS  Google Scholar 

  68. Rudwaleit M, Listing J, Brandt J et al (2004) Prediction of a major clinical response(BASDAI 50) to tumour necrosis factor alpha blockers in ankylosing spondylitis. Ann Rheum Dis 63:665–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Vastesaeger N, Van Der Heijde D, Inman R et al (2011) Predicting the outcome of ankylosing spondylitis therapy. Ann Rheum Dis 70:973–981

    Article  PubMed  Google Scholar 

  70. Brewerton DA, Caffrey M, Nicholls A et al (1974) HL-A 27 and the arthropathies associated with ulcerative colitis and psoriasis. Lancet 1:956–958

    Article  PubMed  CAS  Google Scholar 

  71. Guðjónsson JE, Valdimarsson H, Kárason A et al (2002) HLA-Cw6-positive and HLA-Cw6-negative patients with psoriasis vulgaris have distinct clinical features. J Investig Dermatol 118:362–365

    Article  Google Scholar 

  72. FitzGerald O, Haroon M, Giles JT et al (2015) Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther 17(1):115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rosenbaum JT (1992) Acute anterior uveitis and spondyloarthropathies. Rheum Dis Clin N Am 18:143–151

    CAS  Google Scholar 

  74. Schiellerup P, Krogfelt KA, Locht H (2008) A comparison of self-reported joint symptoms following infection with different enteric pathogens: effect of HLA-B27. J Rheumatol 35(3):480–487

    PubMed  Google Scholar 

  75. Ollier W, Pepper L, Thomson W (1994) HLA-B27 as a marker for developing subluxations of the cervical spine in RA. Arthritis & Rheumatology 37(suppl):A1017

    Google Scholar 

  76. den Uyl D, van der Horst-Bruinsma IE, van Agtmael M (2004) Progression of HIV to AIDS: a protective role for HLA-B27? AIDS Rev 6(2):89–96

    Google Scholar 

  77. Mustonen J, Partanen J, Kanerva M et al (1998) Association of HLA B27 with benign clinical course of Nephropathia Epidemica caused by Puumala hantavirus. Scand J Immunol 47(3):277–279

    Article  PubMed  CAS  Google Scholar 

  78. Neumann-Haefelin C (2013) HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis: two sides of the same coin? Curr Opin Rheumatol 25:426–433

    Article  PubMed  CAS  Google Scholar 

  79. Reddy V, Desai A, Krishna SS et al (2017) Molecular mimicry between Chikungunya virus and host components: a possible mechanism for the arthritic manifestations. PLoS Negl Trop Dis 11(1):e0005238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM et al (2010) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 42(2):123–127

    Article  CAS  Google Scholar 

  81. International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45(7):730–738

    Article  CAS  Google Scholar 

  82. Reveille JD (2015) Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol 34:1009–1018

    Article  PubMed  PubMed Central  Google Scholar 

  83. Azizlerli G, Kose AA, Sarica R et al (2003) Prevalence of Behcet's disease in Istanbul, Turkey. Int J Dermatol 42:803–806

    Article  PubMed  Google Scholar 

  84. Mahr A, Belarbi L, Wechsler B et al (2008) Population-based prevalence study of Behcet's disease: differences by ethnic origin and low variation by age at immigration. Arthritis & Rheumatology 58(12):3951–3959

    Article  Google Scholar 

  85. Çölgeçen E, Özyurt K, Ferahbaş A et al (2015) The prevalence of Behçet's disease in a city in central Anatolia in Turkey. Int J Dermatol 54:286–289

    Article  PubMed  Google Scholar 

  86. Ohno S, Ohguchi M, Hirose S et al (1982) Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol 100:1455–1458

    Article  PubMed  CAS  Google Scholar 

  87. Maldini C, Lavalley MP, Cheminant M et al (2012) Relationships of HLA-B51 or B5 genotype with Behcet’s disease clinical characteristics: systematic review and meta-analyses of observational studies. Rheumatology (Oxford) 51(5):887–900

    Article  Google Scholar 

  88. Kirino Y, Ideguchi H, Takeno M et al (2016) Continuous evolution of clinical phenotype in 578 Japanese patients with Behçet’s disease: a retrospective observational study. Arthritis Res Ther 18:217

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sugisaki K, Saito R, Takagi T et al (2005) HLA-B52-positive vasculo-Behçet disease: usefulness of magnetic resonance angiography, ultrasound study, and computed tomographic angiography for the early evaluation of multiarterial lesions. Mod Rheumatol 15(1):56–61

    Article  PubMed  Google Scholar 

  90. Arber N, Klein T, Meiner Z et al (1991) Close association of HLA-B51 and B52 in Israeli patients with Behçet's syndrome. Ann Rheum Dis 50:351–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Verity DH, Wallace GR, Vaughan RW et al (2003) Behçet’s disease: from Hippocrates to the third millennium. Br J Ophthalmol 87:1175–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Demirseren DD, Ceylan GG, Akoglu G et al (2014) HLA-B51 subtypes in Turkish patients with Behcet’s disease and their correlation with clinical manifestations. Genet Mol Res 13:4788–4796

    Article  PubMed  CAS  Google Scholar 

  93. Yasouka H, Yamaguchi Y, Mizuki N et al (2008) Preferential activation of circulating CD8+ and γδ T cells in patients with active Behçet’s disease and HLA-B51. Clin Exp Rheumatol 26(Suppl. 50):S59–S63

    Google Scholar 

  94. Takeno M, Kariyone A, Yamashita N et al (1995) Excessive function of peripheral blood neutrophils from patients with Behcet's disease and from HLA-B51 transgenic mice. Arthritis Rheum 38:426–433

    Article  PubMed  CAS  Google Scholar 

  95. Eksioglu-Demiralp E, Direskeneli H, Kibaroglu A et al (2001) Neutrophil activation in Behcet’s disease. Clin Exp Rheumatol 19(5 Suppl 24):S19–S24

    PubMed  CAS  Google Scholar 

  96. International Team for the Revision of the International Criteria for Behçet's Disease (ITR-ICBD) (2014) The international criteria for Behçet's disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 28:338–347

    Article  Google Scholar 

  97. Kuranov AB, Kötter I, Henes JC et al (2014) Behçet’s disease in HLA-B*51 negative Germans and Turks shows association with HLA-Bw4-80I. Arthritis Res Ther 16(3):R116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ortiz-Fernández L, Carmona F-D, Montes-Cano M-A et al (2016) Genetic analysis with the Immunochip platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One 11(8):e0161305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gujral N, Freeman HJ, Thomson AB (2012) Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol 18:6036–6059

    Article  PubMed  PubMed Central  Google Scholar 

  100. van Heel DA, Franke L, Hunt KA et al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Garner C, Ahn R, Ding YC et al (2014) Genome-wide association study of celiac disease in North America confirms FRMD4B as new celiac locus. PLoS One 9(7):e101428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Karell K, Louka AS, Moodie SJ et al (2003) European genetics cluster on celiac disease. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 64:469–477

    Article  PubMed  CAS  Google Scholar 

  103. Fasano A (2016) Genetics of celiac disease. http://emedicine.medscape.com/article/1790189-overview

  104. Vader W, Stepniak D, Kooy Y et al (2003) The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A 100(21):12390–12395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Abraham G, Rohmer A, Tye-Din JA et al (2015) Genomic prediction of celiac disease targeting HLA-positive individuals. Genome Med 7:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Shan L, Molberg O, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    Article  PubMed  CAS  Google Scholar 

  107. Arentz-Hansen H, Körner R, Molberg Ø et al (2000) The intestinal T cell response to α-Gliadin in adult celiac disease is focused on a single Deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191(4):603–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kagnoff MF, Austin RK, Hubert JJ et al (1984) Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 160(5):1544–1557

    Article  PubMed  CAS  Google Scholar 

  109. De Palma G, Capilla A, Nova E et al (2012) Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One 7:e30791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Olivares M, Neef A, Castillejo G et al (2015) The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64:406–417

    Article  PubMed  CAS  Google Scholar 

  111. Sollid LM, Lie BA (2005) Celiac disease genetics: current concepts and practical applications. Clinical Gastroenterology Hepatology 3:843–851

    Article  PubMed  CAS  Google Scholar 

  112. Alaedini A, Green PH (2005) Narrative review: celiac disease: understanding a complex autoimmune disorder. Ann Intern Med 142:289–298

    Article  PubMed  CAS  Google Scholar 

  113. Husby S, Koletzko S, Korponay-Szabo IR et al (2012) European Society for Pediatric Gastroenterology, Hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54:136–160

    Article  PubMed  CAS  Google Scholar 

  114. Catassi C, Fasano A (2010) Celiac disease diagnosis: simple rules are better than complicated algorithms. Am J Med 123:691–693

    Article  PubMed  Google Scholar 

  115. Rubio-Tapia A, Hill ID, Kelly CP et al (2013) ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol 108:656–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Rostom A, Murray JA, Kagnoff MF (2006) American gastroenterological association (AGA) institute technical review on the diagnosis and management of celiac disease. Gastroenterology 131:1981–2002

    Article  PubMed  Google Scholar 

  117. Hill ID, Dirks MH, Liptak GS et al (2005) Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the north American Society for Pediatric Gastroenterology, Hepatology and nutrition. J Pediatr Gastroenterol Nutr 40:1–19

    Article  PubMed  Google Scholar 

  118. Alamanos Y, Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4:130–136

    Article  PubMed  Google Scholar 

  119. Stastny P (1976) Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Investig 57:1148–1157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Barton A, Worthington J (2009) Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Rheum 61:1441–1446

    Article  PubMed  CAS  Google Scholar 

  121. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis & Rheumatology 30:1205–1213

    Article  CAS  Google Scholar 

  122. Silver J, Goyert SM (1985) Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility. In: Ferrone S, Solheim BG, Moller E (eds) HLA Class II Antigens. Springer-Verlag, Berlin

    Google Scholar 

  123. Stastny P (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 298:869–871

    Article  PubMed  CAS  Google Scholar 

  124. Gonzalez-Gay MA, Hajeer AH, Dababneh A et al (2001) Seronegative rheumatoid arthritis in elderly and polymyalgia rheumatica have similar patterns of HLA association. J Rheumatol 28:122–125

    PubMed  CAS  Google Scholar 

  125. Weyand CM, Klimiuk PA, Goronzy JJ (1998) Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Semin Immunopathol 20(1–2):5–22

    Article  CAS  Google Scholar 

  126. MacGregor A, Ollier W, Thomson W et al (1995) HLA-DRB1* 0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J Rheumatol 22(6):1032–1036

    PubMed  CAS  Google Scholar 

  127. Hughes LB, Morrison D, Kelley JM et al (2008) The HLA-DRB1 shared epitope is associated with susceptibility to rheumatoid arthritis in African Americans through European genetic admixture. Arthritis & Rheumatology 58:349–358

    Article  Google Scholar 

  128. Lee HS, Lee KW, Song GG et al (2004) Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA–DRB1*0405 and *0901. Arthritis Rheum 50:3468–3475

    Article  PubMed  Google Scholar 

  129. van der Woude D, Lie BA, Lundström E et al (2010) Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis & Rheumatology 62:1236–1245

    Article  CAS  Google Scholar 

  130. Turesson C, Schaid DJ, Weyand CM et al (2005) The impact of HLA-DRB1 genes on extra-articular disease manifestations in rheumatoid arthritis. Arthritis Res Ther 7(6):R1386–R1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Anderson KM, Roark CL, Portas M et al (2016) A molecular analysis of the shared epitope hypothesis: binding of arthritogenic peptides to DRB1*04 alleles. Arthritis & Rheumatology 68:1627–1636

    Article  CAS  Google Scholar 

  132. Roark CL, Anderson KM, Aubrey MT et al (2016) Arthritogenic peptide binding to DRB1*01 alleles correlates with susceptibility to rheumatoid arthritis. J Autoimmun 72:25–32

    Article  PubMed  CAS  Google Scholar 

  133. Raychaudhuri S et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Viatte S, Plant D, Han B et al (2015) Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313:1645–1656

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ling SF, Viatte S, Lunt M et al (2016) HLA-DRB1 amino acid positions 11/13, 71, and 74 are associated with inflammation level, disease activity, and the health assessment questionnaire score in patients with inflammatory polyarthritis. Arthritis & Rheumatology 68:2618–2628

    Article  CAS  Google Scholar 

  136. Huizinga TW, Amos CI, van der Helm-van Mil AH et al (2005) Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis & Rheumatology 52(11):3433–3438

    Article  CAS  Google Scholar 

  137. Klareskog L, Stolt P, Lundberg K et al (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA–DR (shared epitope)–restricted immune reactions to autoantigens modified by citrullination. Arthritis & Rheumatology 54:38–46

    Article  CAS  Google Scholar 

  138. Kim K, Jiang X, Cui J et al (2015) Interactions between amino-acid-defined MHC class II variants and smoking for seropositive rheumatoid arthritis. Arthritis & Rheumatology 67(10):2611–2623

    Article  Google Scholar 

  139. Jiang X, Kallberg H, Chen Z et al (2016) An Immunochip-based interaction study of contrasting interaction effects with smoking in ACPA-positive versus ACPA-negative rheumatoid arthritis. Rheumatology (Oxford) 55(1):149–155

    Article  CAS  Google Scholar 

  140. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588

    Article  PubMed  Google Scholar 

  141. Berglin E, Padyukov L, Sundin U et al (2004) A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. Arthritis Res Ther 6(4):R303–R308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Van der Cruyssen B, Hoffman IEA, Peene I et al (2007) Prediction models for rheumatoid arthritis during diagnostic investigation: evaluation of combinations of rheumatoid factor, anti-citrullinated protein/peptide antibodies and the human leucocyte antigen-shared epitope. Ann Rheum Dis 66(3):364–369

    Article  CAS  Google Scholar 

  143. O'Dell JR, Nepom BS, Haire C et al (1998) HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann Rheum Dis 57(4):209–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Danila MI, Hughes LB, Bridges SL (2008) Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics 9:1011–1015

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schwarting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bodis, G., Toth, V., Schwarting, A. (2018). Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. In: Boegel, S. (eds) HLA Typing. Methods in Molecular Biology, vol 1802. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8546-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8546-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8545-6

  • Online ISBN: 978-1-4939-8546-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics