Advertisement

HLA Typing pp 11-29 | Cite as

Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases

  • Gergely Bodis
  • Victoria Toth
  • Andreas SchwartingEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1802)

Abstract

The aim of this review is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behcet’s disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.

Keywords

Spondyloarthritis Behcet’s disease Rheumatoid arthritis Autoimmunity HLA-B27 HLA-B51 HLA-DQ2/DQ8m HLA-DRB1 

References

  1. 1.
    Reveille JD (2011) Epidemiology of Spondyloarthritis in North America. The American Journal of Medical Sciences 341(4):284–286CrossRefGoogle Scholar
  2. 2.
    Stolwijk C, Boonen A, Tubergen AV et al (2012) Epidemiology of Spondyloarthritis. Rheum Dis Clin N Am 38(3):441–476CrossRefGoogle Scholar
  3. 3.
    Rohekar S, Pope J (2010) Assessment of work disability in seronegative spondyloarthritis. Clin Exp Rheumatol 28:35–40PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ramonda R, Marchesoni A, Carletto A et al (2016) Patient-reported impact of spondyloarthritis on work disability and working life: the ATLANTIS survey. Arthritis Res Ther 18:78PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mathieu A, Cauli A, Fiorillo MT et al (2008) HLA-B27 and ankylosing spondylitis geographic distribution versus malaria endemic: casual or causal liaison? Ann Rheum Dis 67:138–140PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Richens JE, Prasad ML, Bhatia K et al (1986) Arthritis and HLA-B27 in Papua New Guinea. Br Med J (Clin Res Ed) 293(6556):1209CrossRefGoogle Scholar
  7. 7.
    Bhatia K, Richens J, Prasad ML, Koki G (1988) High prevalence of the haplotype HLA-A11, B27 in arthritis patients from the highlands of Papua New Guinea. Tissue Antigens 31(2):103–106PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gofton JP, Chalmers A, Price GE et al (1984) HL-A 27 and ankylosing spondylitis in B.C. Indians. J Rheumatol 11(5):572–573PubMedPubMedCentralGoogle Scholar
  9. 9.
    Boyer GS, Templin DW, Cornoni-Huntley JC et al (1994) Prevalence of spondyloarthropathies in Alaskan Eskimos. J Rheumatol 21(12):2292–2297PubMedPubMedCentralGoogle Scholar
  10. 10.
    Erdesz S, Shubin SV, Shoch BP et al (1994) Spondyloarthropathies in circumpolar populations of Chukotka (Eskimos and Chukchi): epidemiology and clinical characteristics. J Rheumatol 21(6):1101–1104PubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu X, Li YR, Hu LH et al (2010) High frequencies of HLA-B27 in Chinese patients with suspected of ankylosing spondylitis. Rheumatol Int 30(10):1305–1309PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ho HH, Chen JY (2013) Ankylosing spondylitis: Chinese perspective, clinical phenotypes, and associated extra-articular systemic features. Curr Rheumatol Rep 15:344PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mustafa KN, Hammoudeh M, Khan MA (2012) HLA-B27 prevalence in Arab populations and among patients with ankylosing spondylitis. J Rheumatol 39:1675–1677PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Khan MA (1987) Race-related differences in HLA association with ankylosing spondylitis and Reiter's disease in American blacks and whites. J Natl Med Assoc 70(1):41–42Google Scholar
  15. 15.
    Tanaka H, Akaza T, Juji T (1996) Report of the Japanese central bone marrow data center. Clin Transpl 10:139–144Google Scholar
  16. 16.
    Khan MA (1995) HLA-B27 and its subtypes in world populations. Curr Opin Rheumatol 7:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tikly M, Njobvu P, McGill P (2014) Spondyloarthritis in sub Saharan Africa. Curr Rheumatol Rep 16(6):421PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Riecker HH, Neel JV, Test A (1950) The inheritance of spondylitis rhizomelique (ankylosing spondylitis) in the K. Family. Ann Intern Med 33(5):1254–1273PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Schlosstein L, Terasaki PI, Bluestone R et al (1973) High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 288:704–706PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Brewerton DA, Hart FD, Nicholls A et al (1973) Ankylosing spondylitis and HL-A 27. Lancet 1(7809):904–907CrossRefPubMedGoogle Scholar
  21. 21.
    Akkoc N, Khan MA (2006) Epidemiology of Ankylosing spondylitis and related Spondyloarthropathies. In: Ankylosing spondylitis and the Spondyloarthropathies. Elsevier, Amsterdam, pp 117–131Google Scholar
  22. 22.
    Kopplin LJ, Mount G, Suhler EB (2016) Review for disease of the year: epidemiology of HLA-B27 associated ocular disorders. Ocul Immunol Inflamm 24(4):470–475CrossRefPubMedGoogle Scholar
  23. 23.
    Queiro R, Morante I, Cabezas I et al (2016) HLA-B27 and psoriatic disease: a modern view of an old relationship. Rheumatology (Oxford) 55(2):221–229CrossRefGoogle Scholar
  24. 24.
    Braun JBM, Remlinger G (1998) Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis & Rheumatology 41(1):58–67CrossRefGoogle Scholar
  25. 25.
    Reveille JD, Hirsch R, Dillon CF et al (2012) The prevalence of HLA-B27 in the US: data from the US National Health and nutrition examination survey, 2009. Arthritis & Rheumatology 64(5):1407–1411CrossRefGoogle Scholar
  26. 26.
    Costantino F, Talpin A, Said-Nahal R et al (2013) Prevalence of Spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheum Dis 74(4):689–693CrossRefPubMedGoogle Scholar
  27. 27.
    Nasution AR, Mardjuadi A, Suryadhana NG et al (1993) Higher relative risk of spondyloarthropathies among B27 positive Indonesian Chinese than native Indonesians. J Rheumatol 20:988–990PubMedGoogle Scholar
  28. 28.
    van der Linden S, Valkenburg H, Cats A (1983) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br J Rheumatol 22(4 Suppl 2):18–19CrossRefPubMedGoogle Scholar
  29. 29.
    Feltkamp TE (1995) Factors involved in the pathogenesis of HLA-B27 associated arthritis. Scand J Rheumatol 101:213–217CrossRefGoogle Scholar
  30. 30.
    Jaakkola E, Herzberg I, Laiho K et al (2006) Finnish HLA studies confirm the increased risk conferred by HLA-B27 homozygosity in ankylosing spondylitis. Ann Rheum Dis 65(6):775–780PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    van Der Linden SM, Valkenburg HA, De Jongh BM et al (1984) The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 27(3):241–249PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kim TJ, Na KS, Lee HJ et al (2009) HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. Clin Exp Rheumatol 27:574–579PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dangoria NS, DeLay ML, Kingsbury DJ et al (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277:23459–23468PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Khan MA (2013) Polymorphism of HLA-B27: 105 subtypes currently known. Curr Rheumatol Rep 15:362PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Frankenberger B, Breitkopf S, Albert E et al (1997) Routine molecular genotyping of HLA-B27 in spondyloarthropathies overcomes the obstacles of serological typing and reveals an increased B *2702 frequency in ankylosing spondylitis. J Rheumatol 24(5):899–903PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lin J, Lü H, Feng C (1996) Ankylosing spondylitis and heterogeneity of HLA-B27 in Chinese. Chinese Medical Journal (Engl) 109(4):313–316Google Scholar
  37. 37.
    Taurog DJ (2007) The mystery of HLA B27: if it isn’t one thing, it’s another. Arthritis Rheum 56(8):2478–2481PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hill AVS, Allsop CEM, al KD (1991) HLA class I typing by PCR: HLA-B27 and an African B27 subtype. Lancet 337:640–642PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cauli A, Vacca A, Dessole G et al (2008) HLA-B* 2709 and lack of susceptibility to sacroiliitis: further support from the clinic. Clin Exp Rheumatol 26(6):1111–1112PubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang T, Duan Z, Wu S et al (2014) Association of HLA-B27 genetic polymorphisms with ankylosing spondylitis susceptibility worldwide: a meta-analysis. Modern rheumatology / the Japan Rheumatism Association 24(1):150–161CrossRefGoogle Scholar
  41. 41.
    Lin H, Gong YZ (2017) Association of HLA-B27 with ankylosing spondylitis and clinical features of the HLA-B27-associated ankylosing spondylitis: a meta-analysis. Rheumatol Int 37(8):1267–1280PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mear JP, Schreiber KL, Munz C et al (1999) Misfolding of HLA-B27 as a result of its B suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670PubMedPubMedCentralGoogle Scholar
  43. 43.
    Galocha B, López de Castro JA (2008) Folding of HLA-B27 subtypes is determined by the global effect of polymorphic residues and shows incomplete correspondence to ankylosing spondylitis. Arthritis & Rheumatology 58:401–412CrossRefGoogle Scholar
  44. 44.
    Sheehan NJ (2010) HLA-B27: what's new? Rheumatology (Oxford) 49:621–631CrossRefGoogle Scholar
  45. 45.
    Ebringer A (1983) The cross-tolerance hypothesis, HLA-B27 and ankylosing spondylitis. Br J Rheumatol 22(4 Suppl 2):53–66PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Schwimmbeck PL, Oldstone MB (1988) Molecular mimicry between human leukocyte antigen B27 and Klebsiella. Consequences for spondyloarthropathies. Am J Med 85(6A):51–53PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lahesmaa R, Skurnik M, Vaara M et al (1991) Molecular mimickry between HLA B27 and Yersinia, Salmonella, Shigella and Klebsiella within the same region of HLA α1-helix. Clinical & Experimental Immunology 86:399–404CrossRefGoogle Scholar
  48. 48.
    Fielder M, Pirt SJ, Tarpey I et al (1995) Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae. FEBS Lett 369:243–248PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schittenhelm RB, Sian TC, Wilmann PG et al (2015) Revisiting the Arthritogenic peptide theory: quantitative not qualitative changes in the peptide repertoire of HLA–B27 Allotypes. Arthritis & Rheumatology 67:702–713CrossRefGoogle Scholar
  50. 50.
    Hoentjen F, Tonkonogy SL, Qian BF et al (2007) CD4(+) T lymphocytes mediate colitis in HLA-B27 transgenic rats monoassociated with nonpathogenic Bacteroides vulgatus. Inflamm Bowel Dis 13:317–324PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Rath HC, Wilson KH, Sartor RB (1999) Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 67:2969–2974PubMedPubMedCentralGoogle Scholar
  52. 52.
    Taurog JD, Richardson JA, Croft JT et al (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180(6):2359–2364CrossRefPubMedGoogle Scholar
  53. 53.
    Costello ME, Elewaut D, Kenna TJ et al (2013) Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther 15:214PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lin P, Bach M, Asquith M et al (2014) HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9:e105684PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rudwaleit M, van der Heijde D, Khan MA et al (2004) How to diagnose axial spondyloarthritis early. Ann Rheum Dis 63(5):535–543PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rudwaleit M, van der Heijde D, Landewe R et al (2009) The development of assessment of SpondyloArthritis international society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 68(6):777–783PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kirveskari J, Kellner H, Wuorela M et al (1997) False-negative serological HLA-B27 typing results may be due to altered antigenic epitopes and can be detected by polymerase chain reaction. Br J Rheumatol 36(2):185–189PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Levering WH, Wind H, Sintnicolaas K et al (2003) Flow cytometric HLA-B27 screening: cross-reactivity patterns of commercially available anti-HLA-B27 monoclonal antibodies with other HLA-B antigens. Cytometry Part B Clinical Cytometry 54:28–38CrossRefGoogle Scholar
  59. 59.
    Sieper J, Srinivasan S, Zamani O et al (2013) Comparison of two referral strategies for diagnosis of axial spondyloarthritis: the Recognising and diagnosing Ankylosing spondylitis reliably (RADAR) study. Ann Rheum Dis 72:1621–1627PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Linssen A, Feltkamp TE (1988) B27 positive diseases versus B27 negative diseases. Ann Rheum Dis 47(5):431–439PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Feldtkeller E, Khan MA, van der Heijde D et al (2003) Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int 23:61–66PubMedPubMedCentralGoogle Scholar
  62. 62.
    Marzo-Ortega H, McGonagle D, O’Connor P et al (2009) Baseline and 1-year magnetic resonance imaging of the sacroiliac joint and lumbar spine in very early inflammatory back pain. Relationship between symptoms, HLA-B27 and disease extent and persistence. Ann Rheum Dis 68:1721–1727PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chung HY, Machado P, van der Heijde D et al (2011) HLA-B27 positive patients differ from HLA-B27 negative patients in clinical presentation and imaging: results from the DESIR cohort of patients with recent onset axial spondyloarthritis. Ann Rheum Dis 70:1930–1936PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Khan MA, Kushner I, Braun WE (1977) Comparison of clinical features in HLA-B27 positive and negative patients with ankylosing spondylitis. Arthritis Rheum 20:909–912PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hamersma J, Cardon LR, Bradbury L et al (2001) Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheum 44:1396–1400PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bennett AN, McGonagle D, O'Connor P et al (2008) Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA-B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis & Rheumatology 58:3413–3418CrossRefGoogle Scholar
  67. 67.
    Freeston J, Barkham N, Hensor E et al (2007) Ankylosing spondylitis, HLA-B27 positivity and the need for biologic therapies. Joint Bone Spine 74(2):140–143PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rudwaleit M, Listing J, Brandt J et al (2004) Prediction of a major clinical response(BASDAI 50) to tumour necrosis factor alpha blockers in ankylosing spondylitis. Ann Rheum Dis 63:665–670PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Vastesaeger N, Van Der Heijde D, Inman R et al (2011) Predicting the outcome of ankylosing spondylitis therapy. Ann Rheum Dis 70:973–981PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Brewerton DA, Caffrey M, Nicholls A et al (1974) HL-A 27 and the arthropathies associated with ulcerative colitis and psoriasis. Lancet 1:956–958PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Guðjónsson JE, Valdimarsson H, Kárason A et al (2002) HLA-Cw6-positive and HLA-Cw6-negative patients with psoriasis vulgaris have distinct clinical features. J Investig Dermatol 118:362–365CrossRefGoogle Scholar
  72. 72.
    FitzGerald O, Haroon M, Giles JT et al (2015) Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res Ther 17(1):115PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rosenbaum JT (1992) Acute anterior uveitis and spondyloarthropathies. Rheum Dis Clin N Am 18:143–151Google Scholar
  74. 74.
    Schiellerup P, Krogfelt KA, Locht H (2008) A comparison of self-reported joint symptoms following infection with different enteric pathogens: effect of HLA-B27. J Rheumatol 35(3):480–487PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ollier W, Pepper L, Thomson W (1994) HLA-B27 as a marker for developing subluxations of the cervical spine in RA. Arthritis & Rheumatology 37(suppl):A1017Google Scholar
  76. 76.
    den Uyl D, van der Horst-Bruinsma IE, van Agtmael M (2004) Progression of HIV to AIDS: a protective role for HLA-B27? AIDS Rev 6(2):89–96Google Scholar
  77. 77.
    Mustonen J, Partanen J, Kanerva M et al (1998) Association of HLA B27 with benign clinical course of Nephropathia Epidemica caused by Puumala hantavirus. Scand J Immunol 47(3):277–279PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Neumann-Haefelin C (2013) HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis: two sides of the same coin? Curr Opin Rheumatol 25:426–433PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Reddy V, Desai A, Krishna SS et al (2017) Molecular mimicry between Chikungunya virus and host components: a possible mechanism for the arthritic manifestations. PLoS Negl Trop Dis 11(1):e0005238PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM et al (2010) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 42(2):123–127CrossRefGoogle Scholar
  81. 81.
    International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J et al (2013) Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 45(7):730–738CrossRefGoogle Scholar
  82. 82.
    Reveille JD (2015) Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol 34:1009–1018PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Azizlerli G, Kose AA, Sarica R et al (2003) Prevalence of Behcet's disease in Istanbul, Turkey. Int J Dermatol 42:803–806PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Mahr A, Belarbi L, Wechsler B et al (2008) Population-based prevalence study of Behcet's disease: differences by ethnic origin and low variation by age at immigration. Arthritis & Rheumatology 58(12):3951–3959CrossRefGoogle Scholar
  85. 85.
    Çölgeçen E, Özyurt K, Ferahbaş A et al (2015) The prevalence of Behçet's disease in a city in central Anatolia in Turkey. Int J Dermatol 54:286–289PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ohno S, Ohguchi M, Hirose S et al (1982) Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol 100:1455–1458PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Maldini C, Lavalley MP, Cheminant M et al (2012) Relationships of HLA-B51 or B5 genotype with Behcet’s disease clinical characteristics: systematic review and meta-analyses of observational studies. Rheumatology (Oxford) 51(5):887–900CrossRefGoogle Scholar
  88. 88.
    Kirino Y, Ideguchi H, Takeno M et al (2016) Continuous evolution of clinical phenotype in 578 Japanese patients with Behçet’s disease: a retrospective observational study. Arthritis Res Ther 18:217PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sugisaki K, Saito R, Takagi T et al (2005) HLA-B52-positive vasculo-Behçet disease: usefulness of magnetic resonance angiography, ultrasound study, and computed tomographic angiography for the early evaluation of multiarterial lesions. Mod Rheumatol 15(1):56–61PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Arber N, Klein T, Meiner Z et al (1991) Close association of HLA-B51 and B52 in Israeli patients with Behçet's syndrome. Ann Rheum Dis 50:351–353PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Verity DH, Wallace GR, Vaughan RW et al (2003) Behçet’s disease: from Hippocrates to the third millennium. Br J Ophthalmol 87:1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Demirseren DD, Ceylan GG, Akoglu G et al (2014) HLA-B51 subtypes in Turkish patients with Behcet’s disease and their correlation with clinical manifestations. Genet Mol Res 13:4788–4796PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yasouka H, Yamaguchi Y, Mizuki N et al (2008) Preferential activation of circulating CD8+ and γδ T cells in patients with active Behçet’s disease and HLA-B51. Clin Exp Rheumatol 26(Suppl. 50):S59–S63Google Scholar
  94. 94.
    Takeno M, Kariyone A, Yamashita N et al (1995) Excessive function of peripheral blood neutrophils from patients with Behcet's disease and from HLA-B51 transgenic mice. Arthritis Rheum 38:426–433PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Eksioglu-Demiralp E, Direskeneli H, Kibaroglu A et al (2001) Neutrophil activation in Behcet’s disease. Clin Exp Rheumatol 19(5 Suppl 24):S19–S24PubMedPubMedCentralGoogle Scholar
  96. 96.
    International Team for the Revision of the International Criteria for Behçet's Disease (ITR-ICBD) (2014) The international criteria for Behçet's disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 28:338–347CrossRefGoogle Scholar
  97. 97.
    Kuranov AB, Kötter I, Henes JC et al (2014) Behçet’s disease in HLA-B*51 negative Germans and Turks shows association with HLA-Bw4-80I. Arthritis Res Ther 16(3):R116PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ortiz-Fernández L, Carmona F-D, Montes-Cano M-A et al (2016) Genetic analysis with the Immunochip platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One 11(8):e0161305PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gujral N, Freeman HJ, Thomson AB (2012) Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol 18:6036–6059PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    van Heel DA, Franke L, Hunt KA et al (2007) A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 39:827–829PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Garner C, Ahn R, Ding YC et al (2014) Genome-wide association study of celiac disease in North America confirms FRMD4B as new celiac locus. PLoS One 9(7):e101428PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Karell K, Louka AS, Moodie SJ et al (2003) European genetics cluster on celiac disease. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 64:469–477PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fasano A (2016) Genetics of celiac disease. http://emedicine.medscape.com/article/1790189-overview
  104. 104.
    Vader W, Stepniak D, Kooy Y et al (2003) The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A 100(21):12390–12395PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Abraham G, Rohmer A, Tye-Din JA et al (2015) Genomic prediction of celiac disease targeting HLA-positive individuals. Genome Med 7:72PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Shan L, Molberg O, Parrot I et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Arentz-Hansen H, Körner R, Molberg Ø et al (2000) The intestinal T cell response to α-Gliadin in adult celiac disease is focused on a single Deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191(4):603–612PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kagnoff MF, Austin RK, Hubert JJ et al (1984) Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 160(5):1544–1557PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    De Palma G, Capilla A, Nova E et al (2012) Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One 7:e30791PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Olivares M, Neef A, Castillejo G et al (2015) The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64:406–417PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Sollid LM, Lie BA (2005) Celiac disease genetics: current concepts and practical applications. Clinical Gastroenterology Hepatology 3:843–851PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Alaedini A, Green PH (2005) Narrative review: celiac disease: understanding a complex autoimmune disorder. Ann Intern Med 142:289–298PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Husby S, Koletzko S, Korponay-Szabo IR et al (2012) European Society for Pediatric Gastroenterology, Hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54:136–160PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Catassi C, Fasano A (2010) Celiac disease diagnosis: simple rules are better than complicated algorithms. Am J Med 123:691–693PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Rubio-Tapia A, Hill ID, Kelly CP et al (2013) ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol 108:656–676PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rostom A, Murray JA, Kagnoff MF (2006) American gastroenterological association (AGA) institute technical review on the diagnosis and management of celiac disease. Gastroenterology 131:1981–2002PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hill ID, Dirks MH, Liptak GS et al (2005) Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the north American Society for Pediatric Gastroenterology, Hepatology and nutrition. J Pediatr Gastroenterol Nutr 40:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Alamanos Y, Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4:130–136PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Stastny P (1976) Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Investig 57:1148–1157PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Barton A, Worthington J (2009) Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Rheum 61:1441–1446PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis & Rheumatology 30:1205–1213CrossRefGoogle Scholar
  122. 122.
    Silver J, Goyert SM (1985) Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility. In: Ferrone S, Solheim BG, Moller E (eds) HLA Class II Antigens. Springer-Verlag, BerlinGoogle Scholar
  123. 123.
    Stastny P (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 298:869–871PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Gonzalez-Gay MA, Hajeer AH, Dababneh A et al (2001) Seronegative rheumatoid arthritis in elderly and polymyalgia rheumatica have similar patterns of HLA association. J Rheumatol 28:122–125PubMedPubMedCentralGoogle Scholar
  125. 125.
    Weyand CM, Klimiuk PA, Goronzy JJ (1998) Heterogeneity of rheumatoid arthritis: from phenotypes to genotypes. Semin Immunopathol 20(1–2):5–22CrossRefGoogle Scholar
  126. 126.
    MacGregor A, Ollier W, Thomson W et al (1995) HLA-DRB1* 0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J Rheumatol 22(6):1032–1036PubMedPubMedCentralGoogle Scholar
  127. 127.
    Hughes LB, Morrison D, Kelley JM et al (2008) The HLA-DRB1 shared epitope is associated with susceptibility to rheumatoid arthritis in African Americans through European genetic admixture. Arthritis & Rheumatology 58:349–358CrossRefGoogle Scholar
  128. 128.
    Lee HS, Lee KW, Song GG et al (2004) Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA–DRB1*0405 and *0901. Arthritis Rheum 50:3468–3475PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    van der Woude D, Lie BA, Lundström E et al (2010) Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis & Rheumatology 62:1236–1245CrossRefGoogle Scholar
  130. 130.
    Turesson C, Schaid DJ, Weyand CM et al (2005) The impact of HLA-DRB1 genes on extra-articular disease manifestations in rheumatoid arthritis. Arthritis Res Ther 7(6):R1386–R1393PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Anderson KM, Roark CL, Portas M et al (2016) A molecular analysis of the shared epitope hypothesis: binding of arthritogenic peptides to DRB1*04 alleles. Arthritis & Rheumatology 68:1627–1636CrossRefGoogle Scholar
  132. 132.
    Roark CL, Anderson KM, Aubrey MT et al (2016) Arthritogenic peptide binding to DRB1*01 alleles correlates with susceptibility to rheumatoid arthritis. J Autoimmun 72:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Raychaudhuri S et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Viatte S, Plant D, Han B et al (2015) Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313:1645–1656PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ling SF, Viatte S, Lunt M et al (2016) HLA-DRB1 amino acid positions 11/13, 71, and 74 are associated with inflammation level, disease activity, and the health assessment questionnaire score in patients with inflammatory polyarthritis. Arthritis & Rheumatology 68:2618–2628CrossRefGoogle Scholar
  136. 136.
    Huizinga TW, Amos CI, van der Helm-van Mil AH et al (2005) Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis & Rheumatology 52(11):3433–3438CrossRefGoogle Scholar
  137. 137.
    Klareskog L, Stolt P, Lundberg K et al (2006) A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA–DR (shared epitope)–restricted immune reactions to autoantigens modified by citrullination. Arthritis & Rheumatology 54:38–46CrossRefGoogle Scholar
  138. 138.
    Kim K, Jiang X, Cui J et al (2015) Interactions between amino-acid-defined MHC class II variants and smoking for seropositive rheumatoid arthritis. Arthritis & Rheumatology 67(10):2611–2623CrossRefGoogle Scholar
  139. 139.
    Jiang X, Kallberg H, Chen Z et al (2016) An Immunochip-based interaction study of contrasting interaction effects with smoking in ACPA-positive versus ACPA-negative rheumatoid arthritis. Rheumatology (Oxford) 55(1):149–155CrossRefGoogle Scholar
  140. 140.
    Aletaha D, Neogi T, Silman AJ et al (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Berglin E, Padyukov L, Sundin U et al (2004) A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. Arthritis Res Ther 6(4):R303–R308PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Van der Cruyssen B, Hoffman IEA, Peene I et al (2007) Prediction models for rheumatoid arthritis during diagnostic investigation: evaluation of combinations of rheumatoid factor, anti-citrullinated protein/peptide antibodies and the human leucocyte antigen-shared epitope. Ann Rheum Dis 66(3):364–369CrossRefGoogle Scholar
  143. 143.
    O'Dell JR, Nepom BS, Haire C et al (1998) HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann Rheum Dis 57(4):209–213PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Danila MI, Hughes LB, Bridges SL (2008) Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics 9:1011–1015PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gergely Bodis
    • 1
    • 2
  • Victoria Toth
    • 1
    • 2
  • Andreas Schwarting
    • 2
    • 3
    Email author
  1. 1.Bioscientia Institut für Medizinische Diagnostik GmbHIngelheimGermany
  2. 2.Acura Rheumatology Center Rhineland PalatineBad KreuznachGermany
  3. 3.Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany

Personalised recommendations