Skip to main content

AmpliSAS and AmpliHLA: Web Server Tools for MHC Typing of Non-Model Species and Human Using NGS Data

  • Protocol
  • First Online:
HLA Typing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1802))

Abstract

AmpliSAS and AmpliHLA are web server tools for automatic genotyping of MHC genes from high-throughput sequencing data. AmpliSAS is designed specifically to analyze amplicon sequencing data from non-model species and it is able to perform de-novo genotyping without any previous knowledge of the reference alleles. AmpliHLA is a human-specific version, it performs HLA typing by comparing sequenced variants against human reference alleles from the IMGT/HLA database. Here we describe four genotyping protocols: the first two use amplicon sequencing data to genotype the MHC genes of a passerine bird and human respectively; the third and fourth present the HLA typing of a human cell line starting from RNA and exome sequencing data respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy KM, Travers P, Walport M (2007) Janeway’s immunobiology, 7th edn. Garland Science, New York

    Google Scholar 

  2. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43:D423–D431. https://doi.org/10.1093/nar/gku1161

    Article  PubMed  CAS  Google Scholar 

  3. Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F (2005) Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 15:1022–1027. https://doi.org/10.1016/j.cub.2005.04.050

    Article  PubMed  CAS  Google Scholar 

  4. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 277:979–988. https://doi.org/10.1098/rspb.2009.2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16. https://doi.org/10.1186/1742-9994-2-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    Article  CAS  PubMed  Google Scholar 

  7. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377. https://doi.org/10.1046/j.1420-9101.2003.00531.x

    Article  PubMed  CAS  Google Scholar 

  8. Biedrzycka A, O’Connor E, Migalska M, Radwan J, Zając T, Bielański W, Solarz W, Ćmiel A, Westerdahl H (2017) Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evol Biol 17:159. https://doi.org/10.1186/s12862-017-0997-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wiseman RW, Karl JA, Bohn PS, Nimityongskul FA, Starrett GJ, O’Connor DH (2013) Haplessly hoping: macaque major histocompatibility complex made easy. ILAR J 54:196–210. https://doi.org/10.1093/ilar/ilt036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sato A, Dongak R, Hao L, Takezaki N, Shintani S, Aoki T, Klein J (2006) Mhc class I genes of the cichlid fish Oreochromis niloticus. Immunogenetics 58:917–928. https://doi.org/10.1007/s00251-006-0151-0

    Article  PubMed  CAS  Google Scholar 

  11. Stutz WE, Bolnick DI (2014) Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One 9:e100587. https://doi.org/10.1371/journal.pone.0100587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Migalska M, Sebastian A, Konczal M, Kotlík P, Radwan J, Kotlik P, Radwan J (2017) De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus). Heredity (Edinb) 118:348–357. https://doi.org/10.1038/hdy.2016.105

    Article  CAS  Google Scholar 

  13. Figueroa F, Mayer W, Sato A, Zaleska-Rutczynska Z, Hess B, Tichy H, Klein J (2001) Mhc class I genes of swordtail fishes, Xiphophorus: variation in the number of loci and existence of ancient gene families. Immunogenetics 53:695–708. https://doi.org/10.1007/s00251-001-0378-8

    Article  PubMed  CAS  Google Scholar 

  14. Mehra NK (2001) Histocompatibility antigens. Encycl Life Sci

    Google Scholar 

  15. Trowsdale J, Campbell RD (2001) Mouse MHC genes and products. In: Current protocols in immunology. Wiley, Hoboken, NJ, p Appendix 1L

    Google Scholar 

  16. Lukacs MF, Harstad H, Grimholt U, Beetz-Sargent M, Cooper GA, Reid L, Bakke HG, Phillips RB, Miller KM, Davidson WS, Koop BF (2007) Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics 8:251. https://doi.org/10.1186/1471-2164-8-251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925. https://doi.org/10.1038/44856

    Article  PubMed  CAS  Google Scholar 

  18. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695. https://doi.org/10.1007/s00251-004-0717-7

    Article  PubMed  CAS  Google Scholar 

  19. Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122. doi: imr19008 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE (2013) The IMGT/HLA database. Nucleic Acids Res 41:D1222–D1227. https://doi.org/10.1093/nar/gks949

    Article  PubMed  CAS  Google Scholar 

  21. Wallny H-J, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjødt K, Vainio O, Vilbois F, Wiles MV, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A 103:1434–1439. https://doi.org/10.1073/pnas.0507386103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Livant EJ, Brigati JR, Ewald SJ (2004) Diversity and locus specificity of chicken MHC B class I sequences. Anim Genet 35:18–27

    Article  CAS  PubMed  Google Scholar 

  23. Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity (Edinb) 92:534–542. https://doi.org/10.1038/sj.hdy.6800450

    Article  CAS  Google Scholar 

  24. Sepil I, Moghadam HK, Huchard E, Sheldon BC (2012) Characterization and 454 pyrosequencing of major histocompatibility complex class I genes in the great tit reveal complexity in a passerine system. BMC Evol Biol 12:68. https://doi.org/10.1186/1471-2148-12-68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. O’Connor EA, Strandh M, Hasselquist D, Nilsson JÅ, Westerdahl H (2016) The evolution of highly variable immunity genes across a passerine bird radiation. Mol Ecol 25:977–989. https://doi.org/10.1111/mec.13530

    Article  PubMed  CAS  Google Scholar 

  26. Babik W (2010) Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour 10:237–251. https://doi.org/10.1111/j.1755-0998.2009.02788.x

    Article  PubMed  CAS  Google Scholar 

  27. Babik W, Taberlet P, Ejsmond MJ, Radwan J (2009) New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 9:713–719. https://doi.org/10.1111/j.1755-0998.2009.02622.x

    Article  PubMed  CAS  Google Scholar 

  28. Radwan J, Zagalska-Neubauer M, Cichoń M, Sendecka J, Kulma K, Gustafsson L, Babik W (2012) MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol 21:2469–2479. https://doi.org/10.1111/j.1365-294X.2012.05547.x

    Article  PubMed  Google Scholar 

  29. Lighten J, van Oosterhout C, Paterson IG, McMullan M, Bentzen P (2014) Ultra-deep Illumina sequencing accurately identifies MHC class IIb alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata). Mol Ecol Resour 14:753–767. https://doi.org/10.1111/1755-0998.12225

    Article  PubMed  CAS  Google Scholar 

  30. Sommer S, Courtiol A, Mazzoni CJ (2013) MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genomics 14:542. https://doi.org/10.1186/1471-2164-14-542

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moonsamy PV, Williams T, Bonella P, Holcomb CL, Höglund BN, Hillman G, Goodridge D, Turenchalk GS, Blake LA, D a D, Simen BB, Hamilton A, May AP, Erlich HA (2013) High throughput HLA genotyping using 454 sequencing and the Fluidigm access Array™ system for simplified amplicon library preparation. Tissue Antigens 81:141–149. https://doi.org/10.1111/tan.12071

    Article  PubMed  CAS  Google Scholar 

  32. Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N, DePristo MA, Henn MR, Lennon NJ, de Bakker PIW (2011) Next-generation sequencing for HLA typing of class I loci. BMC Genomics 12:42. https://doi.org/10.1186/1471-2164-12-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bai Y, Ni M, Cooper B, Wei Y, Fury W (2014) Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15:325. https://doi.org/10.1186/1471-2164-15-325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Binladen J, Gilbert MTP, Bollback JP, Panitz F, Bendixen C, Nielsen R, Willerslev E (2007) The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2:e197. https://doi.org/10.1371/journal.pone.0000197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Meyer M, Stenzel U, Myles S, Prüfer K, Hofreiter M (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 35:e97. https://doi.org/10.1093/nar/gkm566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lighten J, van Oosterhout C, Bentzen P (2014) Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 23:3957–3972. https://doi.org/10.1111/mec.12843

    Article  PubMed  Google Scholar 

  37. Biedrzycka A, Sebastian A, Migalska M, Westerdahl H, Radwan J (2017) Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol Ecol Resour 17:642–655. https://doi.org/10.1111/1755-0998.12612

    Article  PubMed  CAS  Google Scholar 

  38. Sebastian A, Herdegen M, Migalska M, Radwan J (2016) Amplisas: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Resour 16:498–510. https://doi.org/10.1111/1755-0998.12453

    Article  PubMed  CAS  Google Scholar 

  39. Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F (2017) Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proceedings Biol Sci 284:20162466. https://doi.org/10.1098/rspb.2016.2466

    Article  Google Scholar 

  40. Pardal S, Drews A, Alves JA, Ramos JA, Westerdahl H (2017) Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Immunogenetics 69:463–478. https://doi.org/10.1007/s00251-017-0993-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, Türeci O, Diken M, Castle JC, Sahin U (2013) HLA typing from RNA-seq sequence reads. Genome Med 4:102. https://doi.org/10.1186/gm403

    Article  Google Scholar 

  42. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Boegel S, Löwer M, Bukur T, Sahin U, Castle JC (2014) A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3:e954893. https://doi.org/10.4161/21624011.2014.954893

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boegel S, Scholtalbers J, Löwer M, Sahin U, Castle JC (2015) In silico HLA typing using standard RNA-seq sequence reads. In: Bugert P (ed) Molecular typing of blood cell antigens, Methods in molecular biology. Springer, New York, pp 115–121

    Google Scholar 

  45. Kreck B, Richter J, Ammerpohl O, Barann M, Esser D, Petersen BS, Vater I, Murga Penas EM, Bormann Chung CA, Seisenberger S, Lee Boyd V, Smallwood S, Drexler HG, Macleod RAF, Hummel M, Krueger F, Häsler R, Schreiber S, Rosenstiel P, Franke A, Siebert R (2013) Base-pair resolution DNA methylome of the EBV-positive endemic Burkitt lymphoma cell line DAUDI determined by SOLiD bisulfite-sequencing. Leukemia 27:1751–1753. https://doi.org/10.1038/leu.2013.4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB (2013) Characterizing and measuring bias in sequence data. Genome Biol 14:R51. https://doi.org/10.1186/gb-2013-14-5-r51

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  48. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439. https://doi.org/10.1038/nbt.2198

    Article  PubMed  CAS  Google Scholar 

  49. Vandenbroucke I, Van Marck H, Verhasselt P, Thys K, Mostmans W, Dumont S, Van Eygen V, Coen K, Tuefferd M, Aerssens J (2011) Minor variant detection in amplicons using 454 massive parallel pyrosequencing: experiences and considerations for successful applications. BioTechniques 51:167–177. https://doi.org/10.2144/000113733

    Article  PubMed  CAS  Google Scholar 

  50. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin J-F (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12:245. https://doi.org/10.1186/1471-2164-12-245

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW (2013) Shining a light on dark sequencing: characterising errors in ion torrent PGM data. PLoS Comput Biol 9:e1003031. https://doi.org/10.1371/journal.pcbi.1003031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Potapov V, Ong JL (2017) Examining sources of error in PCR by single-molecule sequencing. PLoS One 12:e0169774. https://doi.org/10.1371/journal.pone.0169774

    Article  PubMed  PubMed Central  Google Scholar 

  53. Broad Institiute (2014) Picard tools: Java-based command-line utilities for manipulating SAM files

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sebastian, A., Migalska, M., Biedrzycka, A. (2018). AmpliSAS and AmpliHLA: Web Server Tools for MHC Typing of Non-Model Species and Human Using NGS Data. In: Boegel, S. (eds) HLA Typing. Methods in Molecular Biology, vol 1802. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8546-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8546-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8545-6

  • Online ISBN: 978-1-4939-8546-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics