Advertisement

HLA Typing pp 203-213 | Cite as

Using Exome and Amplicon-Based Sequencing Data for High-Resolution HLA Typing with ATHLATES

  • Chang LiuEmail author
  • Xiao Yang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1802)

Abstract

ATHLATES (accurate typing of human leukocyte antigen through exome sequencing) was originally developed to analyze whole-exome sequencing (exome-seq) data from the Illumina platform and to predict the HLA genotype at 2-field or higher resolution. HLA locus-specific reads are first collected by stringent read mapping to the IMGT/HLA database. ATHLATES then performs read assembly, candidate allele identification, and genotype inference. Here, we describe the protocol of using ATHLATES for the above purpose and expand the application to analyze targeted sequencing data using amplicons of full HLA genes.

Keywords

Human leukocyte antigen (HLA) HLA typing Whole-exome sequencing (exome-seq) Targeted sequencing Polymerase chain reaction (PCR) Amplicons 

References

  1. 1.
    Gabriel C, Danzer M, Hackl C, Kopal G, Hufnagl P, Hofer K, Polin H, Stabentheiner S, Proll J (2009) Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol 70(11):960–964.  https://doi.org/10.1016/j.humimm.2009.08.009CrossRefPubMedGoogle Scholar
  2. 2.
    Erlich HA (2015) HLA typing using next generation sequencing: An overview. Hum Immunol 76(12):887–890.  https://doi.org/10.1016/j.humimm.2015.03.001CrossRefPubMedGoogle Scholar
  3. 3.
    Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD (2013) ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 41(14):e142.  https://doi.org/10.1093/nar/gkt481CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barone JC, Saito K, Beutner K, Campo M, Dong W, Goswami CP, Johnson ES, Wang ZX, Hsu S (2015) HLA-genotyping of clinical specimens using Ion Torrent-based NGS. Hum Immunol 76(12):903–909.  https://doi.org/10.1016/j.humimm.2015.09.014CrossRefPubMedGoogle Scholar
  5. 5.
    Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, Heron S, Huynh A, McLaughlin L, Rogers M, Slavich L, Walker R, Monos DS (2016) Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 87(3):141–152.  https://doi.org/10.1111/tan.12736CrossRefPubMedGoogle Scholar
  6. 6.
    Mayor NP, Robinson J, McWhinnie AJ, Ranade S, Eng K, Midwinter W, Bultitude WP, Chin CS, Bowman B, Marks P, Braund H, Madrigal JA, Latham K, Marsh SG (2015) HLA Typing for the Next Generation. PLoS One 10(5):e0127153.  https://doi.org/10.1371/journal.pone.0127153CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ammar R, Paton TA, Torti D, Shlien A, Bader GD (2015) Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Research 4:17.  https://doi.org/10.12688/f1000research.6037.1CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lange V, Bohme I, Hofmann J, Lang K, Sauter J, Schone B, Paul P, Albrecht V, Andreas JM, Baier DM, Nething J, Ehninger U, Schwarzelt C, Pingel J, Ehninger G, Schmidt AH (2014) Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15:63.  https://doi.org/10.1186/1471-2164-15-63CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schofl G, Lang K, Quenzel P, Bohme I, Sauter J, Hofmann JA, Pingel J, Schmidt AH, Lange V (2017) 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics 18(1):161.  https://doi.org/10.1186/s12864-017-3575-zCrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics (Oxford) 30(23):3310–3316.  https://doi.org/10.1093/bioinformatics/btu548CrossRefGoogle Scholar
  11. 11.
    Xie C, Yeo ZX, Wong M, Piper J, Long T, Kirkness EF, Biggs WH, Bloom K, Spellman S, Vierra-Green C, Brady C, Scheuermann RH, Telenti A, Howard S, Brewerton S, Turpaz Y, Venter JC (2017) Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.1707945114
  12. 12.
    Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102.  https://doi.org/10.1186/gm403CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128.  https://doi.org/10.1126/science.aaa1348CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44.  https://doi.org/10.1016/j.cell.2016.02.065CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199.  https://doi.org/10.1056/NEJMoa1406498CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Boegel S, Scholtalbers J, Lower M, Sahin U, Castle JC (2015) In silico HLA typing using standard RNA-Seq sequence reads. Methods Mol Biol 1310:247–258.  https://doi.org/10.1007/978-1-4939-2690-9_20CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ka S, Lee S, Hong J, Cho Y, Sung J, Kim HN, Kim HL, Jung J (2017) HLAscan: genotyping of the HLA region using next-generation sequencing data. BMC Bioinformatics 18(1):258.  https://doi.org/10.1186/s12859-017-1671-3CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, Sham PC, Lau YL, Yang W (2015) HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med 7(1):25.  https://doi.org/10.1186/s13073-015-0145-3CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bai Y, Ni M, Cooper B, Wei Y, Fury W (2014) Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15:325.  https://doi.org/10.1186/1471-2164-15-325CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics (Oxford) 27(12):1691–1692.  https://doi.org/10.1093/bioinformatics/btr174CrossRefGoogle Scholar
  21. 21.
    Hatem A, Bozdag D, Toland AE, Catalyurek UV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184.  https://doi.org/10.1186/1471-2105-14-184CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.  https://doi.org/10.1093/bioinformatics/btp352CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Osoegawa K, Mack SJ, Udell J, Noonan DA, Ozanne S, Trachtenberg E, Prestegaard M (2016) HLA haplotype validator for quality assessments of HLA typing. Hum Immunol 77(3):273–282.  https://doi.org/10.1016/j.humimm.2015.10.018CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  2. 2.Grail, Inc.Menlo ParkUSA

Personalised recommendations