Skip to main content

Using Exome and Amplicon-Based Sequencing Data for High-Resolution HLA Typing with ATHLATES

  • Protocol
  • First Online:
HLA Typing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1802))

Abstract

ATHLATES (accurate typing of human leukocyte antigen through exome sequencing) was originally developed to analyze whole-exome sequencing (exome-seq) data from the Illumina platform and to predict the HLA genotype at 2-field or higher resolution. HLA locus-specific reads are first collected by stringent read mapping to the IMGT/HLA database. ATHLATES then performs read assembly, candidate allele identification, and genotype inference. Here, we describe the protocol of using ATHLATES for the above purpose and expand the application to analyze targeted sequencing data using amplicons of full HLA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabriel C, Danzer M, Hackl C, Kopal G, Hufnagl P, Hofer K, Polin H, Stabentheiner S, Proll J (2009) Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol 70(11):960–964. https://doi.org/10.1016/j.humimm.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  2. Erlich HA (2015) HLA typing using next generation sequencing: An overview. Hum Immunol 76(12):887–890. https://doi.org/10.1016/j.humimm.2015.03.001

    Article  PubMed  CAS  Google Scholar 

  3. Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD (2013) ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 41(14):e142. https://doi.org/10.1093/nar/gkt481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Barone JC, Saito K, Beutner K, Campo M, Dong W, Goswami CP, Johnson ES, Wang ZX, Hsu S (2015) HLA-genotyping of clinical specimens using Ion Torrent-based NGS. Hum Immunol 76(12):903–909. https://doi.org/10.1016/j.humimm.2015.09.014

    Article  PubMed  CAS  Google Scholar 

  5. Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, Heron S, Huynh A, McLaughlin L, Rogers M, Slavich L, Walker R, Monos DS (2016) Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 87(3):141–152. https://doi.org/10.1111/tan.12736

    Article  CAS  PubMed  Google Scholar 

  6. Mayor NP, Robinson J, McWhinnie AJ, Ranade S, Eng K, Midwinter W, Bultitude WP, Chin CS, Bowman B, Marks P, Braund H, Madrigal JA, Latham K, Marsh SG (2015) HLA Typing for the Next Generation. PLoS One 10(5):e0127153. https://doi.org/10.1371/journal.pone.0127153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ammar R, Paton TA, Torti D, Shlien A, Bader GD (2015) Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Research 4:17. https://doi.org/10.12688/f1000research.6037.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lange V, Bohme I, Hofmann J, Lang K, Sauter J, Schone B, Paul P, Albrecht V, Andreas JM, Baier DM, Nething J, Ehninger U, Schwarzelt C, Pingel J, Ehninger G, Schmidt AH (2014) Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15:63. https://doi.org/10.1186/1471-2164-15-63

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schofl G, Lang K, Quenzel P, Bohme I, Sauter J, Hofmann JA, Pingel J, Schmidt AH, Lange V (2017) 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics 18(1):161. https://doi.org/10.1186/s12864-017-3575-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics (Oxford) 30(23):3310–3316. https://doi.org/10.1093/bioinformatics/btu548

    Article  CAS  Google Scholar 

  11. Xie C, Yeo ZX, Wong M, Piper J, Long T, Kirkness EF, Biggs WH, Bloom K, Spellman S, Vierra-Green C, Brady C, Scheuermann RH, Telenti A, Howard S, Brewerton S, Turpaz Y, Venter JC (2017) Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1707945114

  12. Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102. https://doi.org/10.1186/gm403

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. https://doi.org/10.1126/science.aaa1348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199. https://doi.org/10.1056/NEJMoa1406498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Boegel S, Scholtalbers J, Lower M, Sahin U, Castle JC (2015) In silico HLA typing using standard RNA-Seq sequence reads. Methods Mol Biol 1310:247–258. https://doi.org/10.1007/978-1-4939-2690-9_20

    Article  PubMed  Google Scholar 

  17. Ka S, Lee S, Hong J, Cho Y, Sung J, Kim HN, Kim HL, Jung J (2017) HLAscan: genotyping of the HLA region using next-generation sequencing data. BMC Bioinformatics 18(1):258. https://doi.org/10.1186/s12859-017-1671-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, Sham PC, Lau YL, Yang W (2015) HLAreporter: a tool for HLA typing from next generation sequencing data. Genome Med 7(1):25. https://doi.org/10.1186/s13073-015-0145-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bai Y, Ni M, Cooper B, Wei Y, Fury W (2014) Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15:325. https://doi.org/10.1186/1471-2164-15-325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics (Oxford) 27(12):1691–1692. https://doi.org/10.1093/bioinformatics/btr174

    Article  CAS  Google Scholar 

  21. Hatem A, Bozdag D, Toland AE, Catalyurek UV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184. https://doi.org/10.1186/1471-2105-14-184

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Osoegawa K, Mack SJ, Udell J, Noonan DA, Ozanne S, Trachtenberg E, Prestegaard M (2016) HLA haplotype validator for quality assessments of HLA typing. Hum Immunol 77(3):273–282. https://doi.org/10.1016/j.humimm.2015.10.018

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, C., Yang, X. (2018). Using Exome and Amplicon-Based Sequencing Data for High-Resolution HLA Typing with ATHLATES. In: Boegel, S. (eds) HLA Typing. Methods in Molecular Biology, vol 1802. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8546-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8546-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8545-6

  • Online ISBN: 978-1-4939-8546-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics