Advertisement

HLA Typing pp 193-201 | Cite as

PHLAT: Inference of High-Resolution HLA Types from RNA and Whole Exome Sequencing

  • Yu BaiEmail author
  • David Wang
  • Wen Fury
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1802)

Abstract

Inferring HLA types from genome-wide sequencing data has gained growing attention with the development of new cost-efficient sequencing technologies and the increasing need to integrate HLA types with transcriptomic or other genomic information for insights into immune-mediated diseases, vaccination, and cancer immunotherapy. PHLAT is a computational tool designed for high-resolution (4-digit) typing of the major class I and class II HLA genes using RNAseq or exome sequencing data as input. We illustrate here how PHLAT can be installed, configured, and executed. This document also provides guidance for how to read and interpret the output results. Finally, the best practices of using PHLAT are also discussed.

Keywords

RNAseq Whole exome sequencing Transcriptome sequencing Human leukocyte antigen High-resolution HLA typing Hematopoietic transplant Organ transplant HLA matching Autoimmune Immuno-oncology Cancer vaccine Bayesian inference 

References

  1. 1.
    Danzer M, Niklas N, Stabentheiner S, Hofer K, Proll J, Stuckler C, Raml E, Polin H, Gabriel C (2013) Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics 14:221.  https://doi.org/10.1186/1471-2164-14-221CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Duke JL, Lind C, Mackiewicz K, Ferriola D, Papazoglou A, Gasiewski A, Heron S, Huynh A, McLaughlin L, Rogers M, Slavich L, Walker R, Monos DS (2016) Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 87(3):141–152.  https://doi.org/10.1111/tan.12736CrossRefPubMedGoogle Scholar
  3. 3.
    Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N, DePristo MA, Henn MR, Lennon NJ, de Bakker PI (2011) Next-generation sequencing for HLA typing of class I loci. BMC Genomics 12:42.  https://doi.org/10.1186/1471-2164-12-42CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weimer ET, Montgomery M, Petraroia R, Crawford J, Schmitz JL (2016) Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing. J Mol Diagn 18(5):668–675.  https://doi.org/10.1016/j.jmoldx.2016.03.009CrossRefPubMedGoogle Scholar
  5. 5.
    Carapito R, Radosavljevic M, Bahram S (2016) Next-generation sequencing of the HLA locus: methods and impacts on HLA typing, population genetics and disease association studies. Hum Immunol 77(11):1016–1023.  https://doi.org/10.1016/j.humimm.2016.04.002CrossRefPubMedGoogle Scholar
  6. 6.
    Hosomichi K, Shiina T, Tajima A, Inoue I (2015) The impact of next-generation sequencing technologies on HLA research. J Hum Genet 60(11):665–673.  https://doi.org/10.1038/jhg.2015.102CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bai Y, Ni M, Cooper B, Wei Y, Fury W (2014) Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15:325.  https://doi.org/10.1186/1471-2164-15-325CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102.  https://doi.org/10.1186/gm403CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim HJ, Pourmand N (2013) HLA typing from RNA-seq data using hierarchical read weighting. PLoS One 8(6):e67885.  https://doi.org/10.1371/journal.pone.0067885CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD (2013) ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 41(14):e142.  https://doi.org/10.1093/nar/gkt481CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S, Sougnez C, Cibulskis K, Kiezun A, Hacohen N, Brusic V, Wu CJ, Getz G (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol 33(11):1152–1158.  https://doi.org/10.1038/nbt.3344CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30(23):3310–3316.  https://doi.org/10.1093/bioinformatics/btu548CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, Levinson D, Fernandez-Vina MA, Davis RW, Davis MM, Mindrinos M (2012) High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A 109(22):8676–8681.  https://doi.org/10.1073/pnas.1206614109CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, Holt RA (2012) Derivation of HLA types from shotgun sequence datasets. Genome Med 4(12):95.  https://doi.org/10.1186/gm396CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Regeneron PharmaceuticalsTarrytownUSA
  2. 2.Department of Biological Statistics and Computational BiologyCornell UniversityIthacaUSA

Personalised recommendations