Skip to main content

Expression Analysis of Genes Regulated by Thyroid Hormone in Neural Cells

  • Protocol
  • First Online:
Thyroid Hormone Nuclear Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1801))

Abstract

The actions of thyroid hormones on brain development and function are due primarily to regulation of gene expression. Identification of direct transcriptional responses requires cell culture approaches given the difficulty of in vivo studies. Here, we describe the use of primary cells in culture obtained from embryonic mouse cerebral cortex, to identify the set of genes regulated directly and indirectly by T3 using RNA-Seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatonnet F, Flamant F, Morte B (2015) A temporary compendium of thyroid hormone target genes in brain. Biochim Biophys Acta 1849(2):122–129. https://doi.org/10.1016/j.bbagrm.2014.05.023

    Article  PubMed  CAS  Google Scholar 

  2. Gil-Ibanez P, Bernal J, Morte B (2014) Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One 9(3):e91692. https://doi.org/10.1371/journal.pone.0091692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gil-Ibanez P, Garcia-Garcia F, Dopazo J, Bernal J, Morte B (2015) Global Transcriptome analysis of primary Cerebrocortical cells: identification of genes regulated by Triiodothyronine in specific cell types. Cereb Cortex 27(1):706–717. https://doi.org/10.1093/cercor/bhv273

    Article  Google Scholar 

  4. Samuels HH, Stanley F, Casanova J (1979) Depletion of L-3,5,3′-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology 105(1):80–85. https://doi.org/10.1210/endo-105-1-80

    Article  PubMed  CAS  Google Scholar 

  5. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, Dopazo J, Meyer TF, Conesa A (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28(20):2678–2679. https://doi.org/10.1093/bioinformatics/bts503

    Article  PubMed  CAS  Google Scholar 

  8. Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  PubMed  CAS  Google Scholar 

  9. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223. https://doi.org/10.1101/gr.124321.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G, Duncan JA 3rd, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MG, Barres BA (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53. https://doi.org/10.1016/j.neuron.2015.11.013

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226):1138–1142. https://doi.org/10.1126/science.aaa1934

    Article  PubMed  CAS  Google Scholar 

  14. Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8(6):469–477. https://doi.org/10.1038/nmeth.1613

    Article  PubMed  CAS  Google Scholar 

  15. Goecks J, Nekrutenko A, Taylor J, Galaxy T (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86. https://doi.org/10.1186/gb-2010-11-8-r86

    Article  PubMed  PubMed Central  Google Scholar 

  16. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

Download references

Acknowledgments

Supported by grants SAF2014-54919-R from the Plan Estatal de Investigación Científica y Técnica y de Innovación, Spain and by the Center for Research on Rare Dieseases (Ciberer) under the frame of E-Rare-2, the ERA-Net for Research on rare Diseases. The contribution of Drs Pilar Gil-Ibañez and Mónica M. Belinchón is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bernal, J., Morte, B. (2018). Expression Analysis of Genes Regulated by Thyroid Hormone in Neural Cells. In: Plateroti, M., Samarut, J. (eds) Thyroid Hormone Nuclear Receptor. Methods in Molecular Biology, vol 1801. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7902-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7902-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7901-1

  • Online ISBN: 978-1-4939-7902-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics