Skip to main content

Thyroid Hormone Action: The p43 Mitochondrial Pathway

  • Protocol
  • First Online:
Book cover Thyroid Hormone Nuclear Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1801))

Abstract

The possibility that several pathways are involved in the multiplicity of thyroid hormone physiological influences led to searches for the occurrence of T3 extra nuclear receptors. The existence of a direct T3 mitochondrial pathway is now well established. The demonstration that TRα1 mRNA encodes not only a nuclear thyroid hormone receptor but also two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has provided new clues to understand the pleiotropic influence of iodinated hormones.

The use of a T3 photo affinity label derivative (T3-PAL) allowed detecting two mitochondrial T3 binding proteins. In association with western blots using antibodies raised against the T3 nuclear receptor TRα1, mitochondrial T3 receptors were identified as truncated TRα1 forms. Import and in organello transcription experiments performed in isolated mitochondria led to the conclusion that p43 is a transcription factor of the mitochondrial genome, inducing changes in the mitochondrial/nuclear crosstalk. In vitro experiments indicated that this T3 mitochondrial pathway affects cell differentiation, apoptosis, and transformation. Generation of transgenic mice demonstrated the involvement of this mitochondrial pathway in the determination of muscle phenotype, glucose metabolism, and thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wrutniak-Cabello C, Casas F, Rochard P et al (2001) Effets non génomiques des hormones thyroïdiennes. In: Leclère J, Orgiazzi RB, Schlienger JL, Wémeau JL (eds) La thyroïde, des concepts à la pratique clinique, 2nd edn. Elvesier, Amsterdam, p 162

    Google Scholar 

  2. Tata JR, Ernster L, Lindberg O et al (1963) The action of thyroid hormones at the cell level. Biochem J 86:408–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sap J, Muñoz A, Damm K et al (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324:635–640

    Article  CAS  PubMed  Google Scholar 

  4. Weinberger C, Thompson CC, Ong ES et al (1986) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324:641–646

    Article  CAS  PubMed  Google Scholar 

  5. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    PubMed  CAS  Google Scholar 

  6. Suen CS, Yen PM, Chin WW (1994) In vitro transcriptional studies of the roles of the thyroid hormone (T3) response elements and minimal promoters in T3-stimulated gene transcription. J Biol Chem 269:1314–1322

    PubMed  CAS  Google Scholar 

  7. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimers and heterodimers. Endocr Rev 15:391–407

    PubMed  CAS  Google Scholar 

  8. Harvey CB, Williams GR (2002) Mechanism of thyroid hormone action. Thyroid 12:441–446

    Article  CAS  PubMed  Google Scholar 

  9. Segal J, Gordon A (1977) The effects of actinomycin D, puromycin, cycloheximide and hydroxyurea on 3′,5,3-triiodo-L-thyronine stimulated 2-deoxy-D-glucose uptake in chick embryo heart cells in vitro. Endocrinology 101:150–156

    Article  CAS  PubMed  Google Scholar 

  10. Segal J (1989) A rapid, extranuclear effect of 3,5,3′-triiodothyronine on sugar uptake by several tissues in the rat in vivo. Evidence for a physiological role for the thyroid hormone action at the level of the plasma membrane. Endocrinology 124:2755–2764

    Article  CAS  PubMed  Google Scholar 

  11. Segal J, Ingbar SH (1982) Specific binding sites for triiodothyronine in the plasma membrane of rat thymocytes. Correlation with biochemical responses. J Clin Invest 70:919–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bergh JJ, Lin HY, Lansing L et al (2005) Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  CAS  PubMed  Google Scholar 

  13. Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16:429–435

    Article  CAS  PubMed  Google Scholar 

  14. Kalyanaraman H, Schwappacher R, Joshua J et al (2014) Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci Signal 7:ra48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sterling K, Brenner MA, Sakurada T (1980) Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science 210:340–342

    Article  CAS  PubMed  Google Scholar 

  16. Sterling K, Brenner MA (1995) Thyroid hormone action: effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism 34:193–199

    Article  Google Scholar 

  17. Enriquez JA, Fernandez-Silva P, Garrido-Pérez N et al (1999) Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol Cell Biol 19:657–670

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goglia F, Torresani J, Bugli P et al (1981) In vitro binding of triiodothyronine to rat liver mitochondria. Pflugers Arch Eur J Physiol 390:120–124

    Article  CAS  Google Scholar 

  19. Sterling K, Milch PO (1975) Thyroid hormone binding by a component of mitochondrial membrane. Proc Natl Acad Sci U S A 72:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashizume K, Ichikawa K (1982) Localization of 3,5,3′-L-triiodothyronine receptor in rat kidney mitochondrial membranes. Biochem Biophys Res Commun 106:920–926

    Article  CAS  PubMed  Google Scholar 

  21. Pascual A, Casanova J, Samuels HH (1982) Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J Biol Chem 257:9640–9647

    PubMed  CAS  Google Scholar 

  22. Wrutniak C, Cassar-Malek I, Marchal S et al (1995) A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    Article  CAS  PubMed  Google Scholar 

  23. Bigler J, Eisenman RN (1988) c-erbA encodes multiple proteins in chicken erythroid cells. Mol Cell Biol 8:4155–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bigler J, Hokanson W, Eisenman RN (1992) Thyroid hormone receptor transcriptional activity is potentially autoregulated by truncated forms of the receptor. Mol Cell Biol 12:2406–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scheller K, Sekeris CE, Krohne G et al (2000) Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol 79:299–307

    Article  CAS  PubMed  Google Scholar 

  26. Yager JD, Chen JQ (2007) Mitochondrial estrogen receptors—new insights into specific functions. Trends Endocrinol Metab 18:89–91

    Article  CAS  PubMed  Google Scholar 

  27. Silvagno F, De Vivo E, Attanasio A et al (2010) Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS One 5:e8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casas F, Domenjoud L, Rochard P et al (2000) A 45 kDa protein related to PPARgamma2, induced by peroxisome proliferators, is located in the mitochondrial matrix. FEBS Lett 478:4–8

    Article  CAS  PubMed  Google Scholar 

  29. Casas F, Daury L, Grandemange S et al (2003) Endocrine regulation of mitochondrial activity: involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 17:426–436

    Article  CAS  PubMed  Google Scholar 

  30. Carazo A, Levin J, Casas F et al (2012) Protein sequences involved in the mitochondrial import of the 3,5,3′-L-triiodothyronine receptor p43. J Cell Physiol 227:3768–3777

    Article  CAS  PubMed  Google Scholar 

  31. Mavinakere MS, Powers JM, Subramanian KS et al (2012) Multiple novel signals mediate thyroid hormone receptor nuclear import and export. J Biol Chem 287:31280–31297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  Google Scholar 

  33. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  CAS  PubMed  Google Scholar 

  34. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  PubMed  Google Scholar 

  35. Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349

    Article  CAS  PubMed  Google Scholar 

  36. Casas F, Rochard P, Rodier A et al (1999) A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19:7913–7924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wrutniak C, Rochard P, Casas F et al (1998) Physiological importance of the T3 mitochondrial pathway. Ann Acad Sci N Y 839:93–100

    Article  CAS  Google Scholar 

  38. Chocron ES, Sayre NL, Holstein D et al (2012) The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism. Mol Endocrinol 26:1117–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607

    Article  CAS  PubMed  Google Scholar 

  40. Pizzo P, Drago I, Filadi R et al (2012) Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 464:3–17

    Article  CAS  PubMed  Google Scholar 

  41. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  PubMed  Google Scholar 

  42. Biswas G, Guha M, Avadhani NG (2005) Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 354:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poyton RO, Ball KA, Castello R (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20:332–340

    Article  CAS  PubMed  Google Scholar 

  44. Mazière C, Conte MA, Degonville J et al (1999) Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Bioch Biophys Res Commun 265:116–122

    Article  CAS  Google Scholar 

  45. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  46. Georgiadi A, Kersten S (2012) Mechanisms of gene regulation by fatty acids. Adv Nutr 3:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gremlich S, Bonny C, Waeber G et al (1997) Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 272:30261–30269

    Article  CAS  PubMed  Google Scholar 

  48. Ailhaud GP, Abumrad N, Amri EZ et al (1994) A new look at fatty acids as signal-transducing molecules. World Rev Nutr Diet 75:35–45

    Article  CAS  PubMed  Google Scholar 

  49. Grandemange S, Seyer P, Carazo A et al (2005) Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res 65:4282–4291

    Article  CAS  PubMed  Google Scholar 

  50. Saelim N, John LM, Wu J et al (2004) Non transcriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor. J Cell Biol 167:915–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seyer P, Grandemange S, Busson M et al (2006) Mitochondrial activity regulates myoblast differentiation by control of c-Myc expression. J Cell Physiol 207:75–86

    Article  CAS  PubMed  Google Scholar 

  52. Miner JH, Wold BJ (1991) c-myc inhibition of MyoD and myogenin-initiated myogenic differentiation. Mol Cell Biol 11:2842–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Crescenzi M, Crouch DH, Tato F (1994) Transformation by myc prevents fusion but not biochemical differentiation of C2C12 myoblasts: mechanisms of phenotypic correction in mixed culture with normal cells. J Cell Biol 125:1137–1145

    Article  CAS  PubMed  Google Scholar 

  54. Cabello G, Casas F, Wrutniak-Cabello C (2010) Transcription factors and muscle differentiation. In: Giordano A, Galderesi U (eds) Cell cycle regulation and differentiation in cardiovascular and neuronal system. Springer, New York. https://doi.org/10.1007/978-1-60327-153-0_3

    Chapter  Google Scholar 

  55. Rochard P, Rodier A, Casas F et al (2000) Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 275:2733–2744

    Article  CAS  PubMed  Google Scholar 

  56. Kaneko T, Watanabe T, Oishi M (1988) Effect of mitochondrial protein synthesis inhibitors on erythroid differentiation of mouse erythroleukemia (friend) cells. Mol Cell Biol 8:3311–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cordeau-Lossouarn L, Vayssière JL, Larcher JC et al (1991) Mitochondrial maturation during neuronal differentiation in vivo and in vitro. Biol Cell 71:57–65

    Article  CAS  PubMed  Google Scholar 

  58. Seyer P, Grandemange S, Rochard P et al (2011) P43-dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of Calcineurin expression. Exp Cell Res 317:2059–2071

    Article  CAS  PubMed  Google Scholar 

  59. Chin ER, Olson EN, Richardson JA et al (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saelim N, Holstein D, Chocron ES et al (2007) Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis 12:1781–1794

    Article  CAS  PubMed  Google Scholar 

  61. Casas F, Pessemesse L, Grandemange S et al (2009) Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One 4:e5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Casas F, Pessemesse L, Grandemange S et al (2008) Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types. PLoS One 3:e2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pessemesse L, Schlernitzauer A, Sar C et al (2012) Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB J 26:748–756

    Article  CAS  PubMed  Google Scholar 

  65. Pelletier P, Gauthier K, Sideleva O et al (2008) Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity. Endocrinology 149:6471–6486

    Article  CAS  PubMed  Google Scholar 

  66. Bertrand C, Blanchet E, Pessemesse L et al (2013) Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging. PLoS One 8:e75111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blanchet E, Bertrand C, Annicotte JS et al (2012) The mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J 26:40–50

    Article  CAS  PubMed  Google Scholar 

  68. Bertrand-Gaday C, Pessemesse L, Cabello G et al (2016) Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor. FEBS Lett 590:982–991

    Article  CAS  PubMed  Google Scholar 

  69. Fleischer S, Kervina M (1974) Subcellular fractionation of rat liver. Methods Enzymol 31:6–41

    Article  CAS  PubMed  Google Scholar 

  70. Horowitz ZD, Samuels HH (1988) Thyroid receptor. In: Gronemeyer H (ed) Affinity labelling and cloning of steroid and thyroid hormone receptors. Ellis Horwood Ltd, Chichester, pp p79–p83

    Google Scholar 

  71. Ostronoff LK, Izquierdo JM, Enríquez JA, Montoya J, Cuezva JM (1996) Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J 316:183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  73. Komiya T, Mihara K (1996) Protein import into mammalian mitochondria. Characterization of the intermediates along the import pathway of the precursor into the matrix. J Biol chem 271:22105–22110

    Article  CAS  PubMed  Google Scholar 

  74. Ragan CI, Wilson MT, Darley-Usmar VM et al (1987) Sub-fractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria, a practical approach. IRL Press, Washington, DC, pp 79–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Wrutniak-Cabello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wrutniak-Cabello, C., Casas, F., Cabello, G. (2018). Thyroid Hormone Action: The p43 Mitochondrial Pathway. In: Plateroti, M., Samarut, J. (eds) Thyroid Hormone Nuclear Receptor. Methods in Molecular Biology, vol 1801. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7902-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7902-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7901-1

  • Online ISBN: 978-1-4939-7902-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics