Skip to main content

Molecular Docking for Predictive Toxicology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

Molecular docking is an in silico method widely applied in drug discovery programs to predict the binding mode of a given molecule interacting with a specific biological target. This computational technique is today emerging also in the field of predictive toxicology for regulatory purposes, being for instance successfully applied to develop classification models for the prediction of the endocrine disruptor potential of chemicals. Herein, we describe the protocol for adapting molecular docking to the purposes of predictive toxicology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  2. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang G, Zhu W (2016) Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future Med Chem 8:1707–1710

    Article  CAS  PubMed  Google Scholar 

  5. Liantonio A, Imbrici P, Camerino GM et al (2016) Kidney CLC-K chloride channels inhibitors: structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms. J Hypertens 34:981–992

    Article  CAS  PubMed  Google Scholar 

  6. Nicolotti O, Benfenati E, Carotti A, Gadaleta D, Gissi A, Mangiatordi GF, Novellino E (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19:1757–1768

    Article  CAS  PubMed  Google Scholar 

  7. Merlot C (2010) Computational toxicology--a tool for early safety evaluation. Drug Discov Today 15:16–22

    Article  CAS  PubMed  Google Scholar 

  8. Kavlock R, Dix D (2010) Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Environ Health B Crit Rev 13:197–217

    Article  CAS  PubMed  Google Scholar 

  9. Gissi A, Mangiatordi GF, Sobański T, Netzeva T, Nicolotti O (2017) Non-test methods for REACH legislation. Comprehensive Medicinal Chemistry 3rd ed, Volume 1

    Google Scholar 

  10. Gissi A, Gadaleta D, Floris M, Olla S, Carotti A, Novellino E, Benfenati E, Nicolotti O (2014) An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX 31:23–36

    Article  PubMed  Google Scholar 

  11. Trisciuzzi D, Alberga D, Mansouri K et al (2015) Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 7:1921–1936

    Article  CAS  PubMed  Google Scholar 

  12. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct-Prop Relatsh IJQSPR 1:45–63

    Google Scholar 

  13. Mansouri K, Abdelaziz A, Rybacka A et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124:1023–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kamel M, Kleinstreuer N, Watt E, Harris J, Judson R (2017) CoMPARA: collaborative modeling project for androgen receptor activity conference: SOT meeting 56th annual meeting and ToxExpo. doi: https://doi.org/10.13140/rg.2.2.16791.78241

  15. Trisciuzzi D, Alberga D, Mansouri K, Judson RS, Novellino E, Mangiatordi GF, Nicolotti O (2017) Predictive structure-based toxicology approaches to assess the androgenic potential of chemicals. J Chem Inf Model 57:2874–2884

    Article  CAS  PubMed  Google Scholar 

  16. Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol RTP 25:1–5

    Article  CAS  PubMed  Google Scholar 

  17. Kleinstreuer NC, Ceger P, Watt ED et al (2017) Development and validation of a computational model for androgen receptor activity. Chem Res Toxicol 30:946–964

    Article  CAS  PubMed  Google Scholar 

  18. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  21. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  22. Kolšek K, Mavri J, Sollner Dolenc M, Gobec S, Turk S (2014) Endocrine disruptome–an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding. J Chem Inf Model 54:1254–1267

    Article  CAS  PubMed  Google Scholar 

  23. Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7:1047–1055

    Article  CAS  PubMed  Google Scholar 

  24. Schrödinger Release 2016–3: LigPrep, Schrödinger, LLC, New York, NY, 2016

    Google Scholar 

  25. Schrödinger Suite 2016–3 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2016

    Google Scholar 

  26. Cantin L, Faucher F, Couture JF et al (2007) Structural characterization of the human androgen receptor ligand-binding domain complexed with EM5744, a rationally designed steroidal ligand bearing a bulky chain directed toward helix 12. J Biol Chem 282:30910–30919

    Article  CAS  PubMed  Google Scholar 

  27. Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Mol Basel Switz 17:4791–4810

    CAS  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Biol 10:980

    Article  CAS  PubMed  Google Scholar 

  30. Kinjo AR, Suzuki H, Yamashita R et al (2012) Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format. Nucleic Acids Res 40:D453–D460

    Article  CAS  PubMed  Google Scholar 

  31. Trueblood KN, Bürgi H-B, Burzlaff H, Dunitz JD, Gramaccioli CM, Schulz HH, Shmueli U, Abrahams SC (1996) Atomic displacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallogr A 52:770–781

    Article  Google Scholar 

  32. Rupp B (2007) Biomolecular crystallography: principles, practice, and application to structural biology. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  33. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  PubMed  Google Scholar 

  34. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24:591–604

    Article  CAS  PubMed  Google Scholar 

  35. Wilantho A, Tongsima S, Jenwitheesuk E (2008) Pre-docking filter for protein and ligand 3D structures. Bioinformation 3:189–193

    Article  PubMed  PubMed Central  Google Scholar 

  36. Provost F, Kohavi R (1998) Guest editors’ introduction: on applied research in machine learning. Mach Learn 30:127–132

    Article  Google Scholar 

  37. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 48:2534–2547

    Article  CAS  PubMed  Google Scholar 

  38. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35

    Article  CAS  PubMed  Google Scholar 

  39. Schisterman EF, Perkins NJ, Liu A, Bondell H (2005) Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology 16:73–81

    Article  PubMed  Google Scholar 

  40. Li H, Zhang H, Zheng M, Luo J, Kang L, Liu X, Wang X, Jiang H (2009) An effective docking strategy for virtual screening based on multi-objective optimization algorithm. BMC Bioinformatics 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Powers DM (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol 2:37–63

    Google Scholar 

  42. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405:442–451

    Article  CAS  PubMed  Google Scholar 

  43. Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508

    Article  CAS  PubMed  Google Scholar 

  44. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manage 45:427–437

    Article  Google Scholar 

  45. Sánchez-Rodríguez A, Pérez-Castillo Y, Schürer SC, Nicolotti O, Mangiatordi GF, Borges F, Cordeiro MNDS, Tejera E, Medina-Franco JL, Cruz-Monteagudo M (2017) From flamingo dance to (desirable) drug discovery: a nature-inspired approach. Drug Discov Today 22:1489–1502

    Article  CAS  PubMed  Google Scholar 

  46. Nembri S, Grisoni F, Consonni V, Todeschini R (2016) In silico prediction of cytochrome P450-drug interaction: QSARs for CYP3A4 and CYP2C9. Int J Mol Sci 17:914–933

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by FIRB [Futuro in Ricerca 2012, RBFR12SJA8_003] and the Programma IDEA 2011. We acknowledge the US Environmental Protection Agency (US-EPA) for providing us high-quality androgenic experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe F. Mangiatordi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trisciuzzi, D., Alberga, D., Leonetti, F., Novellino, E., Nicolotti, O., Mangiatordi, G.F. (2018). Molecular Docking for Predictive Toxicology. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics