Skip to main content

QSAR: What Else?

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

QSAR (quantitative structure–activity relationship) is a method for predicting the physical and biological properties of small molecules; it is today in large use in companies and public services. However, as any scientific method, it is nowadays challenged by more and more requests, especially considering its possible role in assessing the safety of new chemicals. Posing the question whether QSAR is a way not only to exploit available knowledge but also to build new knowledge, we shortly review QSAR history, thus searching for a QSAR epistemology. We consider the three pillars on which QSAR stands: biological data, chemical knowledge, and modeling algorithms. Most of the time we assume that biological data is a true picture of the world (as they result from good experimental practice), that chemical knowledge is scientifically true; so if a QSAR is not working, blame modeling. This opens the way to look at the role of modeling in developing scientific theories, and in producing knowledge. QSAR is a mature technology; however, debate is still active in many topics, in particular about the acceptability of the models and how they are explained. After an excursus in inductive reasoning, we relate the QSAR methodology to open debates in the philosophy of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Titus Lucretius Carus, Of The Nature of Things ,

    http://www.gutenberg.org/ebooks/785?msg=welcome_stranger

  2. 2.

    http://www.antares-life.eu/index.php?sec=modellist

  3. 3.

    https://plato.stanford.edu/entries/induction-problem/

  4. 4.

    https://plato.stanford.edu/entries/justep-intext/

  5. 5.

    <https://plato.stanford.edu/archives/fall2014/entries/justep-intext/>

References

  1. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  2. Hansch C, Fujita T (1964) p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  3. Hansch C (1969) Quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–239

    Article  CAS  Google Scholar 

  4. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399

    Article  CAS  PubMed  Google Scholar 

  5. Kier LB, Hall LH, Murray WJ, Randić M (1975) Molecular connectivity I: relationship to non specific local anesthesia. J Pharm Sci 64:1971–1974

    Article  CAS  PubMed  Google Scholar 

  6. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  7. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  8. Karelson K, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044

    Article  CAS  PubMed  Google Scholar 

  9. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  10. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  11. Li L, Hu J, Ho Y-S (2014) Global performance and trend of QSAR/QSPR research: a bibliometric analysis. Mol Inform 33:655–668

    Article  CAS  PubMed  Google Scholar 

  12. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin MTD et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977−5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  14. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph 20(4):269–276

    Article  CAS  Google Scholar 

  15. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  16. OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models. Organization for economic co-operation and development (2004) http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf

  17. José Ayala F, Dobzhansky T (eds) (1974) Studies in the philosophy of biology: reduction and related problems. University of California Press, California

    Google Scholar 

  18. Popper KR (1974) Scientific reduction and the essential incompleteness of all science. In: Ayala FJ, Dobzhansky T (eds) Studies in the philosophy of biology. Palgrave, London

    Google Scholar 

  19. Schummer J (1999) Coping with the growth of chemical knowledge: challenges for chemistry documentation, education, and working chemists. Educación Química 10:92–101

    Article  CAS  Google Scholar 

  20. Gòmez Bombarelli R, Duvenaud DK, Hernàndez Lobato JM, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2016) Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, Washington, DC

    Google Scholar 

  21. Gini G, Ferrari T, Cattaneo D, Golbamaki Bakhtyari N, Manganaro A, Benfenati E (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR and QSAR Environ Res 24:365–383

    Article  CAS  Google Scholar 

  22. Brieman L (2001) Statistical modeling: the two cultures (with comment and a rejoinder by the author). Stat Sci 16:199–231

    Article  Google Scholar 

  23. Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–658

    Article  Google Scholar 

  24. Wolpert D (1996) The lack of a priori distinctions between learning algorithms. Neural Comput 8:1341–1390

    Article  Google Scholar 

  25. Benfenati E, Gini G, Hoffmann S, Luttik R (2010) Comparing in vivo, in vitro, in Silico methods and integrated strategies for chemical assessment: problems and prospects. ATLA 38:153–166

    PubMed  CAS  Google Scholar 

  26. Benfenati E, Gonella Diaza R, Cassano A, Pardoe S, Gini G, Mays C et al (2011) The acceptance of in silico models for REACH. Requirements, barriers, and perspectives. Chem Cent J 5:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cronin MTD, Schultz W (2003) Pitfalls in QSAR. J Mol Struct (THEOCHEM) 622:39–51

    Article  CAS  Google Scholar 

  28. Alves V, Muratov E, Capuzzi S, Politi R, Low Y, Braga R et al (2016) Alarms about structural alerts. Green Chem 18:4348–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistic analysis and relevant structural alerts. Chem Cent J 4(Suppl 1):S2. (online http://www.journal.chemistrycentral.com/content/4/S1/S2)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E (2014) ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res 25:999–1011

    Article  CAS  PubMed  Google Scholar 

  31. Benfenati E, Roncaglioni A, Petoumenaou M, Cappelli C, Gini G (2015) Integrating QSAR and read across for environmental assessment. SAR QSAR Environ Res 26:605–618

    Article  CAS  PubMed  Google Scholar 

  32. Rudner R (1953) The scientist qua scientist makes value judgments. Philos Sci 20:1–6

    Article  Google Scholar 

  33. Lovie AD, Lovie P (1986) The flat maximum effect and linear scoring models for prediction. J Forecast 5:159–168

    Article  Google Scholar 

  34. Trout JD, Bishop M (2002) 50 years of successful predictive modeling should be enough: lessons for philosophy of science. Philos Sci 69(S3):S197–S208

    Article  Google Scholar 

  35. Solomonoff RJ (1964) A formal theory of inductive inference: parts 1 and 2. Inf Control 7:1-22–224-254

    Google Scholar 

  36. Suppes P (1962) Models of data. In Studies in the methodology and foundations of science. Selected Papers from 1951 to 1969, Dordrecht, Reidel. pp. 24–35

    Chapter  Google Scholar 

  37. Hodges W (1997) A shorter model theory. Cambridge University Press, Cambridge

    Google Scholar 

  38. Bailer-Jones DM (2003) When scientific models represent. Int Stud Philos Sci 17:59–74

    Article  Google Scholar 

  39. Giere R (1988) Explaining science: a cognitive approach. University of Chicago Press, Chicago

    Book  Google Scholar 

  40. Cartwright N (1983) How the laws of physics lie. Clarendon Press, Oxford

    Book  Google Scholar 

  41. Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philos Sci 15:135–175

    Article  Google Scholar 

  42. Witten H, Frank E (2000) Data mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann Publishers, London

    Google Scholar 

  43. Benfenati E, Crètien JR, Gini G, Piclin N, Pintore M, Roncaglioni A (2007) Validation of the models. In: Benfenati E (ed) Quantitative structure-activity relationships (QSAR) for pesticides regulatory purposes. Elsevier, Amsterdam, pp 185–200

    Chapter  Google Scholar 

  44. Gütlein M, Helma C, Karwath A, Kramer S (2013) A large-scale empirical evaluation of cross-validation and external test set validation in (Q)SAR. Mol Inform 32:516–528

    Article  CAS  PubMed  Google Scholar 

  45. Bi J, Bennett K P (2003) Regression error characteristic curves. Procs of the Twentieth international conference on machine learning (ICML-2003), Washington DC

    Google Scholar 

  46. Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  47. Polishchuk PG (2017) Interpretation of QSAR models: past, present and future. J Chem Inf Model 57(11):2618–2639

    Article  CAS  PubMed  Google Scholar 

  48. Hartung T (2017) Food for thought. Opinion versus evidence for the need to move away from animal testing. ALTEX 34:193–200

    Article  PubMed  Google Scholar 

  49. Ulanowicz RE (2009) A third window: natural life beyond Newton and Darwin. Templeton Foundation Press, West Conshohocken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Gini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gini, G. (2018). QSAR: What Else?. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics