Skip to main content

Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

Quantitative structure–activity relationships (QSARs) for prediction of toxicological endpoints built up with the CORAL software are discussed. Prejudices related to these QSAR models are listed. Possible ways to improve the software are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toropov AA, Toropova AP, Lombardo A, Roncaglioni A, Benfenati E, Gini G (2011) CORAL: building up the model for bioconcentration factor and defining it’s applicability domain. Eur J Med Chem 46:1400–1403

    Article  PubMed  CAS  Google Scholar 

  2. Roncaglioni A, Toropov AA, Toropova AP, Benfenati E (2013) In silico methods to predict drug toxicity. Curr Opin Pharmacol 13:802–806

    Article  PubMed  CAS  Google Scholar 

  3. Toropova AP, Toropov AA, Lombardo A, Roncaglioni A, Benfenati E, Gini G (2012) CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas). J Comput Chem 33:1218–1223

    PubMed  CAS  Google Scholar 

  4. Schleifer K-J (2013) Computational approaches in agricultural research. Chapter 2, In book: Jeschke P, Krämer W, Schirmer U, Witschel M (eds) Modern methods in crop protection research, pp 21–41. Wiley-VCH: Verlag&C0. KGaA, Boschstr.12, 69469 Weinheim, Germany. Print ISBN: 978-3-527-33175-8 ePub ISBN: 978-3-527-65592-2

    Google Scholar 

  5. Ghorbanzadeh M, Zhang J, Andersson PL (2016) Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish. J Chemom 30:298–307

    Article  CAS  Google Scholar 

  6. Toropov AA, Toropova AP, Marzo M, Dorne JL, Georgiadis N, Benfenati E (2017) QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ Toxicol Pharmacol 53:158–163

    Article  PubMed  CAS  Google Scholar 

  7. Hisaki T, Kaneko MAN, Yamaguchi M, Sasa H, Kouzuki H (2015) Development of qsar models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients. J Toxicol Sci 40:163–180

    Article  PubMed  CAS  Google Scholar 

  8. Burello E (2017) Review of (Q)SAR models for regulatory assessment of nanomaterials risks. NanoImpact 8:48–58

    Article  Google Scholar 

  9. Gobbi M, Beeg M, Toropova MA, Toropov AA, Salmona M (2016) Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds. Toxicol Lett 250–251:42–46

    Article  PubMed  CAS  Google Scholar 

  10. Sokolović D, Aleksić D, Milenković V, Karaleić S, Mitić D, Kocić J, Mekić B, Veselinović JB, Veselinović AM (2016) QSAR modeling of bis-quinolinium and bis-isoquinolinium compounds as acetylcholine esterase inhibitors based on the Monte Carlo method—the implication for Myasthenia gravis treatment. Med Chem Res 25:2989–2998

    Article  CAS  Google Scholar 

  11. Toropov AA, Toropova AP, Cappellini L, Benfenati E, Davoli E (2016) Odor threshold prediction by means of the Monte Carlo method. Ecotoxicol Environ Saf 133:390–394

    Article  PubMed  CAS  Google Scholar 

  12. Toropova AP, Toropov AA (2017) CORAL: binary classifications (active/inactive) for drug-induced liver injury. Toxicol Lett 268:51–57

    Article  PubMed  CAS  Google Scholar 

  13. Park H-G, Yeo M-K (2013) Ecotoxicity estimation of hazardous air pollutants emitted from semiconductor manufacturing processes utilizing QSAR. Bull Kor Chem Soc 34(12):3755–3761

    Article  CAS  Google Scholar 

  14. Tong J, Li L, Bai M, Li K (2017) A new descriptor of amino acids-SVGER and its applications in peptide QSAR. Mol Inform 36(5):1501023

    Article  CAS  Google Scholar 

  15. Algamal ZY, Lee MH (2017) A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives. SAR QSAR Environ Res 28:75–90

    Article  PubMed  CAS  Google Scholar 

  16. Bigdeli A, Hormozi-Nezhad MR, Jalali-Heravi M, Abedini MR, Sharif-Bakhtiar F (2014) Towards defining new nano-descriptors: extracting morphological features from transmission electron microscopy images. RSC Adv 4:60135–60143

    Article  CAS  Google Scholar 

  17. Masand VH, Rastija V (2017) PyDescriptor: a new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemom Intell Lab Syst 169:12–18

    Article  CAS  Google Scholar 

  18. Basak SC (2017) The expanding landscape of graph theoretic molecular descriptors: development, gradual diversification of descriptor space, and applications in QSAR/QMSA and new drug discovery. Curr Comput Aided Drug Des 13:172–176

    PubMed  CAS  Google Scholar 

  19. Cassano A, Robinson RLM, Palczewska A, Puzyn T, Gajewicz A, Tran L, Manganelli S, Cronin MTD (2016) Comparing the CORAL and random forest approaches for modelling the in vitro cytotoxicity of silica nanomaterials. ATLA Altern Lab Anim 44:533–556

    PubMed  Google Scholar 

  20. Cronin MTD, Schultz TW (2003) Pitfalls in QSAR. J Mol Struct THEOCHEM 622:39–51

    Article  CAS  Google Scholar 

  21. Schultz TW, Cronin MTD, Netzeva TI (2003) The present status of QSAR in toxicology. J Mol Struct THEOCHEM 622:23–38

    Article  CAS  Google Scholar 

  22. Doweyko AM (2008) QSAR: dead or alive? J Comput Aided Mol Des 2:81–89

    Article  CAS  Google Scholar 

  23. Gajewicz A (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9:8435–8448

    Article  PubMed  CAS  Google Scholar 

  24. van Leeuwen K, Schultz TW, Henry T, Diderich B, Veith GD (2009) Using chemical categories to fill data gaps in hazard assessment. SAR QSAR Environ Res 20:207–220

    Article  PubMed  CAS  Google Scholar 

  25. Auerbach M, Macdougall I (2017) The available intravenous iron formulations: history, efficacy, and toxicology. Hemodial Int 21:S83–S92

    Article  PubMed  Google Scholar 

  26. Campbell ND (2016) Behavior within fortuitous environments: the entwined history of division 28 and the fields of behavioral pharmacology and toxicology. Exp Clin Psychopharmacol 24:209–213

    Article  PubMed  Google Scholar 

  27. Satoh T (2016) History of Japanese society of toxicology. J Toxicol Sci 41:SP1–SP9

    Article  PubMed  Google Scholar 

  28. Toropov AA, Rasulev BF, Leszczynski J (2007) QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: comparative analysis by MLRA and optimal descriptors. QSAR Comb Sci 26:686–693

    Article  CAS  Google Scholar 

  29. Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemom Intell Lab Syst 110:177–181

    Article  CAS  Google Scholar 

  30. Gramatica P, Cassani S, Roy PP, Kovarich S, Yap CW, Papa E (2012) QSAR modeling is not “push a button and find a correlation”: a case study of toxicity of (Benzo-)triazoles on algae. Mol Inform 31:817–835

    Article  PubMed  CAS  Google Scholar 

  31. Toropov AA, Benfenati E (2007) SMILES as an alternative to the graph in QSAR modelling of bee toxicity. Comput Biol Chem 31:57–60

    Article  PubMed  CAS  Google Scholar 

  32. Wang X, Greene N (2012) Comparing measures of promiscuity and exploring their relationship to toxicity. Mol Inform 31:145–159

    Article  PubMed  CAS  Google Scholar 

  33. Venkatapathy R, Wang CY, Bruce RM, Moudgal C (2009) Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. I. Alternative toxicity measures as an estimator of carcinogenic potency. Toxicol Appl Pharmacol 234:209–221

    Article  PubMed  CAS  Google Scholar 

  34. Gironés X, Carbó-Dorca R (2006) Modelling toxicity using molecular quantum similarity measures. QSAR Comb Sci 25:579–589

    Article  CAS  Google Scholar 

  35. Gissi A, Toropov AA, Toropova AP, Nicolotti O, Carotti A, Benfenati E (2014) Building up QSAR model for toxicity of psychotropic drugs by the Monte Carlo method. Struct Chem 25:1067–1073

    Article  CAS  Google Scholar 

  36. Sahoo S, Adhikari C, Kuanar M, Mishra BK (2016) A short review of the generation of molecular descriptors and their applications in quantitative structure property/activity relationships. Curr Comput Aided Drug Des 12:181–250

    Article  PubMed  CAS  Google Scholar 

  37. Raevsky OA, Razdolskii AN, Liplavskii YV, Raevskaya OE, Yarkov AV (2012) Molecular-biological problems of drug design and mechanism of drug action: acute toxicity evaluation upon intravenous injection into mice: interspecies correlations, lipophilicity parameters, and physicochemical descriptors. Pharm Chem J 46:69–74

    Article  CAS  Google Scholar 

  38. Furtula B, Gutman I (2011) Relation between second and third geometric-arithmetic indices of trees. J Chemom 25:87–91

    Article  CAS  Google Scholar 

  39. Mercader A, Castro EA, Toropov AA (2001) Calculation of total molecular electronic energies from correlation weighting of local graph invariants. J Mol Model 7:1–5

    Article  CAS  Google Scholar 

  40. Morrill JA, Topczewski JJ, Lodge AM, Yasapala N, Quinn DM (2015) Development of quantitative structure activity relationships for the binding affinity of methoxypyridinium cations for human acetylcholinesterase. J Mol Graph Model 62:181–189

    Article  PubMed  CAS  Google Scholar 

  41. Mansouri K, Consonni V, Durjava MK, Kolar B, Öberg T, Todeschini R (2012) Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling. Chemosphere 89:433–444

    Article  PubMed  CAS  Google Scholar 

  42. Diaza RG, Manganelli S, Esposito A, Roncaglioni A, Manganaro A, Benfenati E (2015) Comparison of in silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res 26:1–27

    Article  CAS  PubMed  Google Scholar 

  43. Basant N, Gupta S (2017) QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes. Environ Sci Pollut Res 24:14430–14444

    Article  CAS  Google Scholar 

  44. Toropov AA, Benfenati E (2008) Additive SMILES-based optimal descriptors in QSAR modelling bee toxicity: using rare SMILES attributes to define the applicability domain. Bioorg Med Chem 16:4801–4809

    Article  PubMed  CAS  Google Scholar 

  45. Toropov AA, Toropova AP, Benfenati E, Manganaro A (2009) QSPR modelling of enthalpies of formation for organometallic compounds by SMART-based optimal descriptors. J Comput Chem 30:2576–2582

    Article  PubMed  CAS  Google Scholar 

  46. Toropov AA, Toropova AP, Benfenati E (2010) QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Mol Divers 14:183–192

    Article  PubMed  CAS  Google Scholar 

  47. Rotini A, Manfra L, Spanu F, Pisapia M, Cicero AM, Migliore L (2017) Ecotoxicological method with marine bacteria Vibrio anguillarum to evaluate the acute toxicity of environmental contaminants. J Vis Exp 123:e55211

    Google Scholar 

  48. Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chemom Intell Lab Syst 109:94–100

    Article  CAS  Google Scholar 

  49. Cash GG (2001) Prediction of the genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat Res Genet Toxicol Environ Mutagen 491:31–37

    Article  CAS  Google Scholar 

  50. Lorenzo VP, Filho JMB, Scotti L, Scotti MT (2015) Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Braz J Pharmacogn 25:690–697

    Article  CAS  Google Scholar 

  51. IRFMN (2017) http://www.insilico.eu/coral. Accessed 14 Sept 2017

  52. Toropova AP, Toropov AA, Diaza RG, Benfenati E, Gini G (2011) Analysis of the co-evolutions of correlations as a tool for QSAR-modeling of carcinogenicity: an unexpected good prediction based on a model that seems untrustworthy. Cent Eur J Chem 9:165–174

    Google Scholar 

  53. Toropova AP, Toropov AA, Benfenati E, Gini G (2011) Co-evolutions of correlations for QSAR of toxicity of organometallic and inorganic substances: an unexpected good prediction based on a model that seems untrustworthy. Chemom Intell Lab Syst 105:215–219

    Article  CAS  Google Scholar 

  54. Pajares F, Hartley J, Valiante G (2001) Response format in writing self-efficacy assessment: greater discrimination increases prediction. Meas Eval Couns Dev 33:214–221

    Google Scholar 

  55. Goodarzi M, Freitas MP, Ferreira EB (2009) Influence of changes in 2-D chemical structure drawings and image formats on the prediction of biological properties using MIA-QSAR. QSAR Comb Sci 28:458–464

    Article  CAS  Google Scholar 

  56. Achary PGR (2014) QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software. SAR QSAR Environ Res 25:507–526

    Article  PubMed  CAS  Google Scholar 

  57. Veselinović AM, Milosavljević JB, Toropov AA, Nikolić GM (2013) SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT1A receptor ligands using CORAL. Eur J Pharm Sci 48:532–541

    Article  PubMed  CAS  Google Scholar 

  58. Toropov AA, Toropova AP, Benfenati E, Nicolotti O, Carotti A, Nesmerak K, Veselinovic AM, Veselinovic JB, Duchowicz PR, Bacelo DE, Castro EA, Rasulev BF, Leszczynska D, Leszczynski J (2015) QSPR/QSAR analyses by means of the CORAL software: results, challenges, perspectives. In: Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment. IGI Global, Hershey, PA, pp 560–585

    Chapter  Google Scholar 

  59. Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017) Development of a Sigma-2 receptor affinity filter through a Monte Carlo based QSAR analysis. Eur J Pharm Sci 106:94–101

    Article  PubMed  CAS  Google Scholar 

  60. Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E (2017) Sigma-2 receptor ligands QSAR model dataset. Data Brief 13:514–535

    Article  PubMed  PubMed Central  Google Scholar 

  61. Toropova MA, Raska I, Toropova AP, Raskova M (2017) CORAL software: analysis of impacts of pharmaceutical agents upon metabolism via the optimal descriptors. Curr Drug Metab 18:500–510

    Article  PubMed  CAS  Google Scholar 

  62. Sokolović D, Ranković J, Stanković V, Stefanović R, Karaleić S, Mekić B, Milenković V, Kocić J, Veselinović AM (2017) QSAR study of dipeptidyl peptidase-4 inhibitors based on the Monte Carlo method. Med Chem Res 26:796–804

    Article  CAS  Google Scholar 

  63. Kumar A, Chauhan S (2017) QSAR differential model for prediction of SIRT1 modulation using Monte Carlo method. Drug Res 67:156–162

    CAS  Google Scholar 

  64. Kumar A, Chauhan S (2017) Use of the Monte Carlo method for OECD principles-guided QSAR modeling of SIRT1 inhibitors. Arch Pharm (Weinheim) 350(1):e1600268

    Article  CAS  Google Scholar 

  65. Sokolović D, Stanković V, Toskić D, Lilić L, Ranković G, Ranković J, Nedin-Ranković G, Veselinović AM (2016) Monte Carlo-based QSAR modeling of dimeric pyridinium compounds and drug design of new potent acetylcholine esterase inhibitors for potential therapy of myasthenia gravis. Struct Chem 27:1511–1519

    Article  CAS  Google Scholar 

  66. Aranda JF, Garro Martinez JC, Castro EA, Duchowicz PR (2016) Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds. Int J Mol Sci 17(8):1247

    Article  PubMed Central  Google Scholar 

  67. Islam MA, Pillay TS (2016) Simplified molecular input line entry system-based descriptors in QSAR modeling for HIV-protease inhibitors. Chemom Intell Lab Syst 153:67–74

    Article  CAS  Google Scholar 

  68. Ghaedi A (2015) Predicting the cytotoxicity of ionic liquids using QSAR model based on SMILES optimal descriptors. J Mol Liq 208:269–279

    Article  CAS  Google Scholar 

  69. Fioressi SE, Bacelo DE, Cui WP, Saavedra LM, Duchowicz PR (2015) QSPR study on refractive indices of solvents commonly used in polymer chemistry using flexible molecular descriptors. SAR QSAR Environ Res 26:499–506

    Article  PubMed  CAS  Google Scholar 

  70. Li Q, Ding X, Si H, Gao H (2014) QSAR model based on SMILES of inhibitory rate of 2,3-diarylpropenoic acids on AKR1C3. Chemom Intell Lab Syst 139:132–138

    Article  CAS  Google Scholar 

  71. Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2014) QSAR study of H1N1 neuraminidase inhibitors from influenza a virus. Lett Drug Des Discov 11:420–427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the project EU LIFE-COMBASE (contract LIFE15 ENV/ES/000416) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Toropov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Toropov, A.A., Toropova, A.P., Roncaglioni, A., Benfenati, E. (2018). Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics